↓ Skip to main content

Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer’s disease

Overview of attention for article published in Molecular Neurodegeneration, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

news
1 news outlet
twitter
6 X users
patent
1 patent

Citations

dimensions_citation
99 Dimensions

Readers on

mendeley
129 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer’s disease
Published in
Molecular Neurodegeneration, November 2017
DOI 10.1186/s13024-017-0219-3
Pubmed ID
Authors

Andrew T. McKenzie, Sarah Moyon, Minghui Wang, Igor Katsyv, Won-Min Song, Xianxiao Zhou, Eric B. Dammer, Duc M. Duong, Joshua Aaker, Yongzhong Zhao, Noam Beckmann, Pei Wang, Jun Zhu, James J. Lah, Nicholas T. Seyfried, Allan I. Levey, Pavel Katsel, Vahram Haroutunian, Eric E. Schadt, Brian Popko, Patrizia Casaccia, Bin Zhang

Abstract

Oligodendrocytes (OLs) and myelin are critical for normal brain function and have been implicated in neurodegeneration. Several lines of evidence including neuroimaging and neuropathological data suggest that Alzheimer's disease (AD) may be associated with dysmyelination and a breakdown of OL-axon communication. In order to understand this phenomenon on a molecular level, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic and proteomic data obtained from human AD postmortem brain samples. We then validated these networks using gene expression datasets generated from mice with ablation of major gene expression nodes identified in our AD-dysregulated networks. The robust OL gene coexpression networks that we identified were highly enriched for genes associated with AD risk variants, such as BIN1 and demonstrated strong dysregulation in AD. We further corroborated the structure of the corresponding gene causal networks using datasets generated from the brain of mice with ablation of key network drivers, such as UGT8, CNP and PLP1, which were identified from human AD brain data. Further, we found that mice with genetic ablations of Cnp mimicked aspects of myelin and mitochondrial gene expression dysregulation seen in brain samples from patients with AD, including decreased protein expression of BIN1 and GOT2. This study provides a molecular blueprint of the dysregulation of gene expression networks of OL in AD and identifies key OL- and myelination-related genes and networks that are highly associated with AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 129 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 129 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 22%
Researcher 26 20%
Student > Master 16 12%
Student > Bachelor 10 8%
Student > Doctoral Student 6 5%
Other 18 14%
Unknown 24 19%
Readers by discipline Count As %
Neuroscience 28 22%
Biochemistry, Genetics and Molecular Biology 27 21%
Agricultural and Biological Sciences 21 16%
Computer Science 4 3%
Medicine and Dentistry 4 3%
Other 18 14%
Unknown 27 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2022.
All research outputs
#2,068,620
of 23,493,900 outputs
Outputs from Molecular Neurodegeneration
#221
of 871 outputs
Outputs of similar age
#42,986
of 332,007 outputs
Outputs of similar age from Molecular Neurodegeneration
#3
of 19 outputs
Altmetric has tracked 23,493,900 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 871 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.7. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,007 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.