↓ Skip to main content

Tissue-specific role of RHBDF2 in cutaneous wound healing and hyperproliferative skin disease

Overview of attention for article published in BMC Research Notes, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tissue-specific role of RHBDF2 in cutaneous wound healing and hyperproliferative skin disease
Published in
BMC Research Notes, November 2017
DOI 10.1186/s13104-017-2899-8
Pubmed ID
Authors

Vishnu Hosur, Bonnie L. Lyons, Lisa M. Burzenski, Leonard D. Shultz

Abstract

Gain-of-function (GOF) mutations in RHBDF2 cause tylosis. Patients present with hyperproliferative skin, and keratinocytes from tylosis patients' skin show an enhanced wound-healing phenotype. The curly bare mouse model of tylosis, carrying a GOF mutation in the Rhbdf2 gene (Rhbdf2 (cub) ), presents with epidermal hyperplasia and shows accelerated cutaneous wound-healing phenotype through enhanced secretion of the epidermal growth factor receptor family ligand amphiregulin. Despite these advances in our understanding of tylosis, key questions remain. For instance, it is not known whether the disease is skin-specific, whether the immune system or the surrounding microenvironment plays a role, and whether mouse genetic background influences the hyperproliferative-skin and wound-healing phenotypes observed in Rhbdf2 (cub) mice. We performed bone marrow transfers and reciprocal skin transplants and found that bone marrow transfer from C57BL/6 (B6)-Rhbdf2 (cub/cub) donor mice to B6 wildtype recipient mice failed to transfer the hyperproliferative-skin and wound-healing phenotypes in B6 mice. Furthermore, skin grafts from B6 mice to the dorsal skin of B6-Rhbdf2 (cub/cub) mice maintained the phenotype of the donor mice. To test the influence of mouse genetic background, we backcrossed Rhbdf2 (cub) onto the MRL/MpJ strain and found that the hyperproliferative-skin and wound-healing phenotypes caused by the Rhbdf2 (cub) mutation persisted on the MRL/MpJ strain.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 21%
Student > Bachelor 2 14%
Student > Doctoral Student 1 7%
Other 1 7%
Student > Ph. D. Student 1 7%
Other 3 21%
Unknown 3 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 21%
Medicine and Dentistry 2 14%
Immunology and Microbiology 2 14%
Engineering 2 14%
Neuroscience 1 7%
Other 1 7%
Unknown 3 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 November 2017.
All research outputs
#15,483,026
of 23,007,887 outputs
Outputs from BMC Research Notes
#2,334
of 4,284 outputs
Outputs of similar age
#207,605
of 331,365 outputs
Outputs of similar age from BMC Research Notes
#77
of 158 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,284 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,365 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 158 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.