↓ Skip to main content

Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition

Overview of attention for article published in BMC Systems Biology, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition
Published in
BMC Systems Biology, December 2016
DOI 10.1186/s12918-016-0360-6
Pubmed ID
Authors

Yu-An Huang, Zhu-Hong You, Xing Chen, Gui-Ying Yan

Abstract

Protein-protein interactions (PPIs) are essential to most biological processes. Since bioscience has entered into the era of genome and proteome, there is a growing demand for the knowledge about PPI network. High-throughput biological technologies can be used to identify new PPIs, but they are expensive, time-consuming, and tedious. Therefore, computational methods for predicting PPIs have an important role. For the past years, an increasing number of computational methods such as protein structure-based approaches have been proposed for predicting PPIs. The major limitation in principle of these methods lies in the prior information of the protein to infer PPIs. Therefore, it is of much significance to develop computational methods which only use the information of protein amino acids sequence. Here, we report a highly efficient approach for predicting PPIs. The main improvements come from the use of a novel protein sequence representation by combining continuous wavelet descriptor and Chou's pseudo amino acid composition (PseAAC), and from adopting weighted sparse representation based classifier (WSRC). This method, cross-validated on the PPIs datasets of Saccharomyces cerevisiae, Human and H. pylori, achieves an excellent results with accuracies as high as 92.50%, 95.54% and 84.28% respectively, significantly better than previously proposed methods. Extensive experiments are performed to compare the proposed method with state-of-the-art Support Vector Machine (SVM) classifier. The outstanding results yield by our model that the proposed feature extraction method combing two kinds of descriptors have strong expression ability and are expected to provide comprehensive and effective information for machine learning-based classification models. In addition, the prediction performance in the comparison experiments shows the well cooperation between the combined feature and WSRC. Thus, the proposed method is a very efficient method to predict PPIs and may be a useful supplementary tool for future proteomics studies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 20%
Researcher 2 13%
Student > Master 2 13%
Lecturer 1 7%
Lecturer > Senior Lecturer 1 7%
Other 0 0%
Unknown 6 40%
Readers by discipline Count As %
Computer Science 3 20%
Biochemistry, Genetics and Molecular Biology 1 7%
Agricultural and Biological Sciences 1 7%
Chemical Engineering 1 7%
Immunology and Microbiology 1 7%
Other 3 20%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2017.
All research outputs
#19,594,120
of 24,093,053 outputs
Outputs from BMC Systems Biology
#823
of 1,132 outputs
Outputs of similar age
#318,292
of 427,636 outputs
Outputs of similar age from BMC Systems Biology
#13
of 14 outputs
Altmetric has tracked 24,093,053 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,132 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 427,636 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.