↓ Skip to main content

YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias

Overview of attention for article published in Molecular Neurodegeneration, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
4 X users

Citations

dimensions_citation
150 Dimensions

Readers on

mendeley
226 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias
Published in
Molecular Neurodegeneration, November 2017
DOI 10.1186/s13024-017-0226-4
Pubmed ID
Authors

Franc Llorens, Katrin Thüne, Waqas Tahir, Eirini Kanata, Daniela Diaz-Lucena, Konstantinos Xanthopoulos, Eleni Kovatsi, Catharina Pleschka, Paula Garcia-Esparcia, Matthias Schmitz, Duru Ozbay, Susana Correia, Ângela Correia, Ira Milosevic, Olivier Andréoletti, Natalia Fernández-Borges, Ina M. Vorberg, Markus Glatzel, Theodoros Sklaviadis, Juan Maria Torres, Susanne Krasemann, Raquel Sánchez-Valle, Isidro Ferrer, Inga Zerr

Abstract

YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 226 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 226 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 44 19%
Researcher 34 15%
Student > Master 31 14%
Student > Bachelor 21 9%
Student > Doctoral Student 10 4%
Other 28 12%
Unknown 58 26%
Readers by discipline Count As %
Neuroscience 41 18%
Medicine and Dentistry 34 15%
Biochemistry, Genetics and Molecular Biology 21 9%
Agricultural and Biological Sciences 17 8%
Immunology and Microbiology 8 4%
Other 32 14%
Unknown 73 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 October 2023.
All research outputs
#2,091,330
of 24,704,144 outputs
Outputs from Molecular Neurodegeneration
#230
of 929 outputs
Outputs of similar age
#40,707
of 333,938 outputs
Outputs of similar age from Molecular Neurodegeneration
#3
of 20 outputs
Altmetric has tracked 24,704,144 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 929 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.0. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,938 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.