↓ Skip to main content

Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells

Overview of attention for article published in Stem Cell Research & Therapy, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells
Published in
Stem Cell Research & Therapy, November 2017
DOI 10.1186/s13287-017-0700-5
Pubmed ID
Authors

Qin Shi, JingWei Gao, Yao Jiang, Baolan Sun, Wei Lu, Min Su, Yunzhao Xu, Xiaoqing Yang, Yuquan Zhang

Abstract

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a novel and promising strategy for tissue engineering because of their ability to differentiate into many cell types. We characterized the differentiation of WJ-MSCs into endometrial epithelial cell (EEC)-like and endometrial stromal cell (ESC)-like cells and assessed the effect of 17β-estradiol and 8-Br-cAMP on the differentiation system. WJ-MSCs were treated in two ways to differentiate into EEC-like and ESC-like cells respectively: cocultured with ESCs in control/differentiation medium (17β-estradiol, growth factors); and cultured in control/differentiation medium (8-Br-cAMP alone or 8-Br-cAMP plus 17β-estrogen and growth factors). Three signaling pathway inhibitors (SB203580, PD98059, H89) were used to investigate the mechanism of WJ-MSC differentiation into ESC-like cells. Immunofluorescence, western blot and flow cytometry analyses were used to analyze expression of epithelial markers and stromal cell markers. Enzyme-linked immunosorbent assays were used to test the production of secretory proteins associated with the differentiation of ESC-like cells. 17β-estradiol at 1 μM downregulated vimentin and CD13 and upregulated cytokeratin and CD9 proteins, promoting the differentiation of WJ-MSCs into EEC-like cells in the coculture system. 8-Br-cAMP at 0.5 mM upregulated vimentin and CD13 and downregulated CK and CD9, promoting the differentiation of WJ-MSCs into ESC-like cells. Prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1) were upregulated and the protein kinase A (PKA) signaling pathway was activated, whereas extracellular signal-regulated (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were not affected. 17β-estradiol at 1 μM is a good inducer for facilitating the differentiation of WJ-MSCs into EEC-like cells. 8-Br-cAMP plus estrogen and growth factors can induce the differentiation of WJ-MSCs into ESC-like cells. During the differentiation of WJ-MSCs into ESC-like cells, PRL and IGFBP1 were upregulated by the treatment and the PKA signaling pathway was activated, whereas ERK1/2 and p38 MAPK were not affected. These findings suggest a promising approach to the treatment of endometrial damage and other endometrial diseases and suggest new applications for WJ-MSCs in clinical practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 23%
Student > Ph. D. Student 5 14%
Researcher 4 11%
Student > Master 4 11%
Student > Doctoral Student 1 3%
Other 1 3%
Unknown 12 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 26%
Medicine and Dentistry 4 11%
Immunology and Microbiology 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Agricultural and Biological Sciences 1 3%
Other 2 6%
Unknown 14 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2018.
All research outputs
#14,367,874
of 23,007,887 outputs
Outputs from Stem Cell Research & Therapy
#1,109
of 2,429 outputs
Outputs of similar age
#182,822
of 329,249 outputs
Outputs of similar age from Stem Cell Research & Therapy
#36
of 80 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,429 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,249 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.