↓ Skip to main content

Limited role of regulatory T cells during acute Theiler virus-induced encephalitis in resistant C57BL/6 mice

Overview of attention for article published in Journal of Neuroinflammation, November 2014
Altmetric Badge

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Limited role of regulatory T cells during acute Theiler virus-induced encephalitis in resistant C57BL/6 mice
Published in
Journal of Neuroinflammation, November 2014
DOI 10.1186/s12974-014-0180-9
Pubmed ID
Authors

Chittappen K Prajeeth, Andreas Beineke, Cut Dahlia Iskandar, Viktoria Gudi, Vanessa Herder, Ingo Gerhauser, Verena Haist, René Teich, Jochen Huehn, Wolfgang Baumgärtner, Martin Stangel

Abstract

BackgroundTheiler¿s murine encephalomyelitis virus (TMEV) infection represents a commonly used infectious animal model to study various aspects of the pathogenesis of multiple sclerosis (MS). In susceptible SJL mice, dominant activity of Foxp3+ CD4+ regulatory T cells (Tregs) in the CNS partly contributes to viral persistence and progressive demyelination. On the other hand, resistant C57BL/6 mice rapidly clear the virus by mounting a strong antiviral immune response. However, very little is known about the role of Tregs in regulating antiviral responses during acute encephalitis in resistant mouse strains.MethodsIn this study, we used DEREG mice that express the diphtheria toxin (DT) receptor under control of the foxp3 locus to selectively deplete Foxp3+ Tregs by injection of DT prior to infection and studied the effect of Treg depletion on the course of acute Theiler¿s murine encephalomyelitis (TME).ResultsAs expected, DEREG mice that are on a C57BL/6 background were resistant to TMEV infection and cleared the virus within days of infection, regardless of the presence or absence of Tregs. Nevertheless, in the absence of Tregs we observed priming of stronger effector T cell responses in the periphery, which subsequently resulted in a transient increase in the frequency of IFN¿-producing T cells in the brain at an early stage of infection. Histological and flow cytometric analysis revealed that this transiently increased frequency of brain-infiltrating IFN¿-producing T cells in Treg-depleted mice neither led to an augmented antiviral response nor enhanced inflammation-mediated tissue damage. Intriguingly, Treg depletion did not change the expression of IL-10 in the infected brain, which might play a role for dampening the inflammatory damage caused by the increased number of effector T cells.ConclusionWe therefore propose that unlike susceptible mice strains, interfering with the Treg compartment of resistant mice only has negligible effects on virus-induced pathologies in the CNS. Furthermore, in the absence of Tregs, local anti-inflammatory mechanisms might limit the extent of damage caused by strong anti-viral response in the CNS.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 17%
Student > Doctoral Student 2 11%
Student > Bachelor 2 11%
Professor 2 11%
Student > Ph. D. Student 2 11%
Other 4 22%
Unknown 3 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 22%
Medicine and Dentistry 3 17%
Neuroscience 2 11%
Immunology and Microbiology 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Other 2 11%
Unknown 5 28%