↓ Skip to main content

Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimer’s disease

Overview of attention for article published in Molecular Neurodegeneration, November 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
83 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimer’s disease
Published in
Molecular Neurodegeneration, November 2017
DOI 10.1186/s13024-017-0228-2
Pubmed ID
Authors

Yang Bai, Miao Li, Yanmei Zhou, Lei Ma, Qian Qiao, Wanling Hu, Wei Li, Zachary Patrick Wills, Wen-Biao Gan

Abstract

Alzheimer's disease (AD) is characterized by amyloid deposition, tangle formation as well as synapse loss. Synaptic abnormalities occur early in the pathogenesis of AD. Identifying early synaptic abnormalities and their underlying mechanisms is likely important for the prevention and treatment of AD. We performed in vivo two-photon calcium imaging to examine the activities of somas, dendrites and dendritic spines of layer 2/3 pyramidal neurons in the primary motor cortex in the APPswe/PS1dE9 mouse model of AD and age-matched wild type control mice. We also performed calcium imaging to determine the effect of Aβ oligomers on dendritic calcium activity. In addition, structural and functional two-photon imaging were used to examine the link between abnormal dendritic calcium activity and changes in dendritic spine size in the AD mouse model. We found that somatic calcium activities of layer 2/3 neurons were significantly lower in the primary motor cortex of 3-month-old APPswe/PS1dE9 mice than in wild type mice during quiet resting, but not during running on a treadmill. Notably, a significantly larger fraction of apical dendrites of layer 2/3 pyramidal neurons showed calcium transients with abnormally long duration and high peak amplitudes during treadmill running in AD mice. Administration of Aβ oligomers into the brain of wild type mice also induced abnormal dendritic calcium transients during running. Furthermore, we found that the activity and size of dendritic spines were significantly reduced on dendritic branches with abnormally prolonged dendritic calcium transients in AD mice. Our findings show that abnormal dendritic calcium transients and synaptic depotentiation occur before amyloid plaque formation in the motor cortex of the APPswe/PS1dE9 mouse model of AD. Dendritic calcium transients with abnormally long durations and high amplitudes could be induced by soluble Aβ oligomers and contribute to synaptic deficits in the early pathogenesis of AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 83 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 18%
Researcher 10 12%
Student > Master 10 12%
Student > Bachelor 9 11%
Student > Doctoral Student 5 6%
Other 12 14%
Unknown 22 27%
Readers by discipline Count As %
Neuroscience 25 30%
Agricultural and Biological Sciences 11 13%
Biochemistry, Genetics and Molecular Biology 8 10%
Medicine and Dentistry 3 4%
Psychology 2 2%
Other 10 12%
Unknown 24 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 November 2017.
All research outputs
#15,483,026
of 23,007,887 outputs
Outputs from Molecular Neurodegeneration
#723
of 854 outputs
Outputs of similar age
#203,515
of 325,276 outputs
Outputs of similar age from Molecular Neurodegeneration
#15
of 20 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 854 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,276 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.