↓ Skip to main content

Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation

Overview of attention for article published in Stem Cell Research & Therapy, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
56 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation
Published in
Stem Cell Research & Therapy, November 2017
DOI 10.1186/s13287-017-0719-7
Pubmed ID
Authors

Shu Huang, Xiongbo Song, Tao Li, Jingfang Xiao, Yemiao Chen, Xiaoyuan Gong, Weinan Zeng, Liu Yang, Cheng Chen

Abstract

Cell source plays a key role in cell-based cartilage repair and regeneration. Recent efforts in cell coculture have attempted to combine the advantages and negate the drawbacks of the constituent cell types. The aim of this study was to evaluate the chondrogenic outcome of articular chondrocytes (ACs) and infrapatellar fat pad (IPFP)-derived mesenchymal stem cells (MSCs) in direct coculture. ACs and IPFP MSCs from the same patients with knee osteoarthritis (OA) were cocultured in monolayer and in pellets. The monocultures of each cell type were also used as controls. Morphological and histologic analysis, immunofluorescence staining, reverse transcription-polymerase chain reaction, and enzyme-linked immunosorbent assay were performed to characterize the chondrogenic differentiation of cocultures. Furthermore, the effects of chitosan/hyaluronic acid (CS/HA) nanoparticle exposure on the chondrogenesis of cocultures were examined. In both monolayer and pellet coculture, the hypertrophy of MSCs and the inflammatory activities of ACs were inhibited, although the chondrogenic production in coculture was not promoted compared with that in monoculture. In addition, the exposure of CS/HA nanoparticles to pellet coculture improved the production of type II collagen and aggrecan. We demonstrate for the first time that pellet coculture of ACs and IPFP MSCs with CS/HA nanoparticles could promote chondrogenic outcome while preventing the inflammatory status of ACs and the hypertrophic differentiation of MSCs. These findings suggest that the combination of ACs, IPFP MSCs, and CS/HA might be useful in cartilage repair in knee OA.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 96 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 18%
Student > Master 12 13%
Researcher 11 11%
Student > Bachelor 10 10%
Student > Postgraduate 4 4%
Other 15 16%
Unknown 27 28%
Readers by discipline Count As %
Medicine and Dentistry 19 20%
Biochemistry, Genetics and Molecular Biology 12 13%
Engineering 7 7%
Agricultural and Biological Sciences 7 7%
Materials Science 4 4%
Other 14 15%
Unknown 33 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2017.
All research outputs
#18,576,855
of 23,008,860 outputs
Outputs from Stem Cell Research & Therapy
#1,740
of 2,429 outputs
Outputs of similar age
#248,822
of 324,977 outputs
Outputs of similar age from Stem Cell Research & Therapy
#53
of 68 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,429 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,977 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.