↓ Skip to main content

Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep

Overview of attention for article published in Genetics Selection Evolution, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
106 Dimensions

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep
Published in
Genetics Selection Evolution, November 2017
DOI 10.1186/s12711-017-0360-z
Pubmed ID
Authors

Salvatore Mastrangelo, Marco Tolone, Maria T. Sardina, Gianluca Sottile, Anna M. Sutera, Rosalia Di Gerlando, Baldassare Portolano

Abstract

Because very large numbers of single nucleotide polymorphisms (SNPs) are now available throughout the genome, they are particularly suitable for the detection of genomic regions where a reduction in heterozygosity has occurred and they offer new opportunities to improve the accuracy of inbreeding ([Formula: see text]) estimates. Runs of homozygosity (ROH) are contiguous lengths of homozygous segments of the genome where the two haplotypes inherited from the parents are identical. Here, we investigated the occurrence and distribution of ROH using a medium-dense SNP panel to characterize autozygosity in 516 Valle del Belice sheep and to identify the genomic regions with high ROH frequencies. We identified 11,629 ROH and all individuals displayed at least one ROH longer than 1 Mb. The mean value of [Formula: see text] estimated from ROH longer than1 Mb was 0.084 ± 0.061. ROH that were shorter than 10 Mb predominated. The highest and lowest coverages of Ovis aries chromosomes (OAR) by ROH were on OAR24 and OAR1, respectively. The number of ROH per chromosome length displayed a specific pattern, with higher values for the first three chromosomes. Both number of ROH and length of the genome covered by ROH varied considerably between animals. Two hundred and thirty-nine SNPs were considered as candidate markers that may be under directional selection and we identified 107 potential candidate genes. Six genomic regions located on six chromosomes, corresponding to ROH islands, are presented as hotspots of autozygosity, which frequently coincided with regions of medium recombination rate. According to the KEGG database, most of these genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. A genome scan revealed the presence of ROH islands in genomic regions that harbor candidate genes for selection in response to environmental stress and which underlie local adaptation. These results suggest that natural selection has, at least partially, a role in shaping the genome of Valle del Belice sheep and that ROH in the ovine genome may help to detect genomic regions involved in the determinism of traits under selection.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 111 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 14%
Student > Ph. D. Student 14 13%
Student > Master 12 11%
Student > Bachelor 9 8%
Student > Doctoral Student 8 7%
Other 17 15%
Unknown 36 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 40 36%
Biochemistry, Genetics and Molecular Biology 13 12%
Engineering 3 3%
Veterinary Science and Veterinary Medicine 3 3%
Environmental Science 2 2%
Other 4 4%
Unknown 46 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#772
of 821 outputs
Outputs of similar age
#295,248
of 336,130 outputs
Outputs of similar age from Genetics Selection Evolution
#18
of 19 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,130 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.