↓ Skip to main content

Comparative characterization of all cellulosomal cellulases from Clostridium thermocellum reveals high diversity in endoglucanase product formation essential for complex activity

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, October 2017
Altmetric Badge

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative characterization of all cellulosomal cellulases from Clostridium thermocellum reveals high diversity in endoglucanase product formation essential for complex activity
Published in
Biotechnology for Biofuels and Bioproducts, October 2017
DOI 10.1186/s13068-017-0928-4
Pubmed ID
Authors

Benedikt Leis, Claudia Held, Fabian Bergkemper, Katharina Dennemarck, Robert Steinbauer, Alarich Reiter, Matthias Mechelke, Matthias Moerch, Sigrid Graubner, Wolfgang Liebl, Wolfgang H. Schwarz, Vladimir V. Zverlov

Abstract

Clostridium thermocellum is a paradigm for efficient cellulose degradation and a promising organism for the production of second generation biofuels. It owes its high degradation rate on cellulosic substrates to the presence of supra-molecular cellulase complexes, cellulosomes, which comprise over 70 different single enzymes assembled on protein-backbone molecules of the scaffold protein CipA. Although all 24 single-cellulosomal cellulases were described previously, we present the first comparative catalogue of all these enzymes together with a comprehensive analysis under identical experimental conditions, including enzyme activity, binding characteristics, substrate specificity, and product analysis. In the course of our study, we encountered four types of distinct enzymatic hydrolysis modes denoted by substrate specificity and hydrolysis product formation: (i) exo-mode cellobiohydrolases (CBH), (ii) endo-mode cellulases with no specific hydrolysis pattern, endoglucanases (EG), (iii) processive endoglucanases with cellotetraose as intermediate product (pEG4), and (iv) processive endoglucanases with cellobiose as the main product (pEG2). These modes are shown on amorphous cellulose and on model cello-oligosaccharides (with degree of polymerization DP 3 to 6). Artificial mini-cellulosomes carrying combinations of cellulases showed their highest activity when all four endoglucanase-groups were incorporated into a single complex. Such a modeled nonavalent complex (n = 9 enzymes bound to the recombinant scaffolding protein CipA) reached half of the activity of the native cellulosome. Comparative analysis of the protein architecture and structure revealed characteristics that play a role in product formation and enzyme processivity. The identification of a new endoglucanase type expands the list of known cellulase functions present in the cellulosome. Our study shows that the variety of processivities in the enzyme complex is a key enabler of its high cellulolytic efficiency. The observed synergistic effect may pave the way for a better understanding of the enzymatic interactions and the design of more active lignocellulose-degrading cellulase cocktails in the future.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 21%
Student > Ph. D. Student 13 21%
Student > Bachelor 5 8%
Researcher 4 6%
Student > Postgraduate 2 3%
Other 5 8%
Unknown 21 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 22%
Agricultural and Biological Sciences 11 17%
Engineering 4 6%
Chemical Engineering 3 5%
Immunology and Microbiology 2 3%
Other 8 13%
Unknown 21 33%