↓ Skip to main content

Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis)

Overview of attention for article published in BMC Genomics, November 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
1 X user
patent
1 patent

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis)
Published in
BMC Genomics, November 2017
DOI 10.1186/s12864-017-4277-2
Pubmed ID
Authors

Md. Abdul Kayum, Jong-In Park, Ujjal Kumar Nath, Gopal Saha, Manosh Kumar Biswas, Hoy-Taek Kim, Ill-Sup Nou

Abstract

Protein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them. We have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1-1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5-2 gene for ABA stress, and BrPDI1-4, 6-1 and 9-2 were putative candidate genes for both cold and chilling injury stresses. Our findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 21%
Student > Ph. D. Student 4 8%
Student > Master 4 8%
Student > Doctoral Student 4 8%
Student > Bachelor 3 6%
Other 10 21%
Unknown 13 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 31%
Biochemistry, Genetics and Molecular Biology 8 17%
Unspecified 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Chemical Engineering 1 2%
Other 3 6%
Unknown 17 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2023.
All research outputs
#7,960,512
of 25,374,917 outputs
Outputs from BMC Genomics
#3,479
of 11,244 outputs
Outputs of similar age
#113,896
of 318,888 outputs
Outputs of similar age from BMC Genomics
#67
of 208 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 11,244 research outputs from this source. They receive a mean Attention Score of 4.8. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,888 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 208 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.