↓ Skip to main content

Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion

Overview of attention for article published in Microbial Cell Factories, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion
Published in
Microbial Cell Factories, November 2017
DOI 10.1186/s12934-017-0811-9
Pubmed ID
Authors

Guochao Wu, Zixiang Xu, Leif J. Jönsson

Abstract

Yeast transcription factors (TFs) involved in the regulation of multidrug resistance (MDR) were investigated in experiments with deletion mutants, transformants overexpressing synthetic genes encoding TFs, and toxic concentrations of lignocellulose-derived substances added to cultures as complex mixtures or as specific compounds, viz. coniferyl aldehyde, 5-hydroxymethylfurfural, and furfural. In the presence of complex mixtures of toxic substances from spruce wood, transformants overexpressing YAP1 and STB5, TFs involved in oxidative stress response, exhibited enhanced relative growth rates amounting to 4.589 ± 0.261 and 1.455 ± 0.185, respectively. Other TFs identified as important for resistance included DAL81, GZF3, LEU3, PUT3, and WAR1. Potential overlapping functions of YAP1 and STB5 were investigated in experiments with permutations of deletions and overexpression of the two genes. YAP1 complemented STB5 with respect to resistance to 5-hydroxymethylfurfural, but had a distinct role with regard to resistance to coniferyl aldehyde as deletion of YAP1 rendered the cell incapable of resisting coniferyl aldehyde even if STB5 was overexpressed. We have investigated 30 deletion mutants and eight transformants overexpressing MDR transcription factors with regard to the roles the transcription factors play in the resistance to toxic concentrations of lignocellulose-derived substances. This work provides an overview of the involvement of thirty transcription factors in the resistance to lignocellulose-derived substances, shows distinct and complementary roles played by YAP1 and STB5, and offers directions for the engineering of robust yeast strains for fermentation processes based on lignocellulosic feedstocks.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 27%
Researcher 10 15%
Student > Master 8 12%
Student > Bachelor 6 9%
Student > Doctoral Student 4 6%
Other 6 9%
Unknown 15 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 26 39%
Agricultural and Biological Sciences 16 24%
Chemical Engineering 1 1%
Computer Science 1 1%
Energy 1 1%
Other 3 4%
Unknown 19 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 November 2017.
All research outputs
#19,594,120
of 24,093,053 outputs
Outputs from Microbial Cell Factories
#1,295
of 1,695 outputs
Outputs of similar age
#254,268
of 329,264 outputs
Outputs of similar age from Microbial Cell Factories
#29
of 41 outputs
Altmetric has tracked 24,093,053 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,695 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,264 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.