↓ Skip to main content

Humoral response in experimental autoimmune encephalomyelitis targets neural precursor cells in the central nervous system of naive rodents

Overview of attention for article published in Journal of Neuroinflammation, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Humoral response in experimental autoimmune encephalomyelitis targets neural precursor cells in the central nervous system of naive rodents
Published in
Journal of Neuroinflammation, November 2017
DOI 10.1186/s12974-017-0995-2
Pubmed ID
Authors

Evangelia Kesidou, Olga Touloumi, Roza Lagoudaki, Evangelia Nousiopoulou, Paschalis Theotokis, Kyriaki-Nepheli Poulatsidou, Marina Boziki, Evangelia Kofidou, Nickoleta Delivanoglou, Fani Minti, Georgios Hadjigeorgiou, Nikolaos Grigoriadis, Constantina Simeonidou

Abstract

Neural precursor cells (NPCs) located in the subventricular zone (SVZ), a well-defined NPC niche, play a crucial role in central nervous system (CNS) homeostasis. Moreover, NPCs are involved in the endogenous reparative process both in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the possibility that NPCs may be vulnerable to immune-related components may not be ruled out. Therefore, we investigated the potential affinity of myelin oligodendrocyte glycoprotein (MOG)-induced humoral response(s) to NPCs. MOG35-55-EAE was induced in C57BL/6 mice; blood-sampling was performed on days 17-21 (acute phase) along with a naive group and corresponding antisera (AS) were collected (EAE-AS, NAIVE-AS). The presence of anti-CNS autoantibodies was examined with western blotting. Furthermore, using the collected antisera and anti-MOG antibody (as positive control), immunohistochemistry and double immunofluorescence were implemented on normal neonatal, postnatal, and adult mouse brain sections. Targeted NPCs were identified with confocal microscopy. In vitro immunoreactivity assessment on NPCs challenged with autoantibodies was evaluated for apoptotic/autophagic activity. Western blotting verified the existence of autoantibodies in EAE mice and demonstrated bands corresponding to yet unidentified NPC surface epitopes. A dominant selective binding of EAE-AS in the subventricular zone in all age groups compared to NAIVE-AS (p < 0.001) was observed. Additionally, anti-BrdU(+)/EAE-AS(+) colocalization was significantly higher than anti-BrdU(+)/anti-MOG(+), a finding suggesting that the EAE humoral response colocalized with NPCs(BrdU(+)), cells that do not express MOG. Well-established NPC markers (Nestin, m-Musashi-1, Sox2, DCX, GFAP, NG2) were used to identify the distinct cell types which exhibited selective binding with EAE-AS. The findings verified that EAE-AS exerts cross-reactivity with NPCs which varies throughout the neonatal to adult stage, with a preference to cells of early developmental stages. Finally, increased expressions of Caspase 3 and Beclin 1 on NPCs were detected. We provide evidence for the first time that MOG35-55 EAE induces production of antibodies with affinity to SVZ of naive mice in three different age groups. These autoantibodies target lineage-specific NPCs as brain develops and have the potential to trigger apoptotic pathways. Thus, our findings provide indication that cross-talk between immunity and NPCs may lead to functional alteration of NPCs regarding their viability and potentially oligodendrogenesis and effective remyelination.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 20%
Student > Master 5 17%
Student > Bachelor 3 10%
Researcher 3 10%
Unspecified 3 10%
Other 5 17%
Unknown 5 17%
Readers by discipline Count As %
Neuroscience 6 20%
Biochemistry, Genetics and Molecular Biology 4 13%
Unspecified 3 10%
Agricultural and Biological Sciences 2 7%
Medicine and Dentistry 2 7%
Other 6 20%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2017.
All research outputs
#20,452,930
of 23,008,860 outputs
Outputs from Journal of Neuroinflammation
#2,324
of 2,654 outputs
Outputs of similar age
#372,570
of 437,733 outputs
Outputs of similar age from Journal of Neuroinflammation
#37
of 52 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,654 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,733 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.