↓ Skip to main content

MVQTLCIM: composite interval mapping of multivariate traits in a hybrid F1 population of outbred species

Overview of attention for article published in BMC Bioinformatics, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MVQTLCIM: composite interval mapping of multivariate traits in a hybrid F1 population of outbred species
Published in
BMC Bioinformatics, November 2017
DOI 10.1186/s12859-017-1908-1
Pubmed ID
Authors

Fenxiang Liu, Chunfa Tong, Shentong Tao, Jiyan Wu, Yuhua Chen, Dan Yao, Huogen Li, Jisen Shi

Abstract

With the plummeting cost of the next-generation sequencing technologies, high-density genetic linkage maps could be constructed in a forest hybrid F1 population. However, based on such genetic maps, quantitative trait loci (QTL) mapping cannot be directly conducted with traditional statistical methods or tools because the linkage phase and segregation pattern of molecular markers are not always fixed as in inbred lines. We implemented the traditional composite interval mapping (CIM) method to multivariate trait data in forest trees and developed the corresponding software, mvqtlcim. Our method not only incorporated the various segregations and linkage phases of molecular markers, but also applied Takeuchi's information criterion (TIC) to discriminate the QTL segregation type among several possible alternatives. QTL mapping was performed in a hybrid F1 population of Populus deltoides and P. simonii, and 12 QTLs were detected for tree height over 6 time points. The software package allowed many options for parameters as well as parallel computing for permutation tests. The features of the software were demonstrated with the real data analysis and a large number of Monte Carlo simulations. We provided a powerful tool for QTL mapping of multiple or longitudinal traits in an outbred F1 population, in which the traditional software for QTL mapping cannot be used. This tool will facilitate studying of QTL mapping and thus will accelerate molecular breeding programs especially in forest trees. The tool package is freely available from https://github.com/tongchf /mvqtlcim.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 13%
Student > Ph. D. Student 2 13%
Researcher 2 13%
Student > Master 2 13%
Professor > Associate Professor 2 13%
Other 2 13%
Unknown 3 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 53%
Biochemistry, Genetics and Molecular Biology 2 13%
Neuroscience 1 7%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2017.
All research outputs
#18,345,702
of 23,577,761 outputs
Outputs from BMC Bioinformatics
#6,094
of 7,418 outputs
Outputs of similar age
#309,325
of 441,051 outputs
Outputs of similar age from BMC Bioinformatics
#104
of 152 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,051 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 152 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.