↓ Skip to main content

Isolation and epithelial co-culture of mouse renal peritubular endothelial cells

Overview of attention for article published in BMC Molecular and Cell Biology, November 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Isolation and epithelial co-culture of mouse renal peritubular endothelial cells
Published in
BMC Molecular and Cell Biology, November 2014
DOI 10.1186/s12860-014-0040-6
Pubmed ID
Authors

Ye Zhao, Hong Zhao, Yun Zhang, Tania Tsatralis, Qi Cao, Ya Wang, Yiping Wang, Yuan Min Wang, Steve I Alexander, David C Harris, Guoping Zheng

Abstract

BackgroundEndothelial-mesenchymal transition (EndoMT) has been shown to be a major source of myofibroblasts, contributing to kidney fibrosis. However, in vitro study of endothelial cells often relies on culture of isolated primary endothelial cells due to the unavailability of endothelial cell lines. Our recent study suggested that peritubular endothelial cells could contribute to kidney fibrosis through EndoMT. Therefore, successful isolation and culture of mouse peritubular endothelial cells could provide a new platform for studying kidney fibrosis. This study describes an immunomagnetic separation method for the isolation of mouse renal peritubular endothelial cells using anti-CD146 MicroBeads, followed by co-culture with mouse renal proximal tubular epithelial cells to maintain endothelial phenotype.ResultsFlow cytometry showed that after isolation and two days of culture, about 95% of cells were positive for endothelial-specific marker CD146. The percentage of other cells, including dendritic cells (CD11c) and macrophages (F4/80), was less than 1%. Maintenance of endothelial cell phenotype required vascular endothelial growth factor (VEGF) and co-culture with mouse proximal tubular epithelial cells.ConclusionIn this study, we established a method for the isolation of mouse renal peritubular endothelial cells by using immunomagnetic separation with anti-CD146 MicroBeads, followed by co-culture with mouse renal proximal tubular epithelial cells to maintain phenotype.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 43 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 30%
Researcher 5 11%
Student > Master 5 11%
Student > Bachelor 4 9%
Student > Postgraduate 2 5%
Other 3 7%
Unknown 12 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 20%
Medicine and Dentistry 7 16%
Agricultural and Biological Sciences 5 11%
Immunology and Microbiology 4 9%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Other 4 9%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2015.
All research outputs
#17,285,668
of 25,373,627 outputs
Outputs from BMC Molecular and Cell Biology
#778
of 1,233 outputs
Outputs of similar age
#227,131
of 369,496 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#9
of 14 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 369,496 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.