↓ Skip to main content

Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production
Published in
Biotechnology for Biofuels and Bioproducts, December 2016
DOI 10.1186/s13068-016-0681-0
Pubmed ID
Authors

Richard Auria, Céline Boileau, Sylvain Davidson, Laurence Casalot, Pierre Christen, Pierre Pol Liebgott, Yannick Combet-Blanc

Abstract

Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima. It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H2, CO2, and H2S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima. When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H2-specific productivity with the lowest inhibition. A mathematical model predicting H2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Master 3 12%
Student > Bachelor 2 8%
Professor 2 8%
Researcher 2 8%
Other 3 12%
Unknown 9 35%
Readers by discipline Count As %
Environmental Science 5 19%
Agricultural and Biological Sciences 4 15%
Engineering 3 12%
Biochemistry, Genetics and Molecular Biology 1 4%
Chemistry 1 4%
Other 1 4%
Unknown 11 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 January 2018.
All research outputs
#3,701,803
of 25,374,647 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#199
of 1,578 outputs
Outputs of similar age
#69,659
of 422,468 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#7
of 56 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,468 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.