↓ Skip to main content

Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation

Overview of attention for article published in Journal of Neuroinflammation, November 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation
Published in
Journal of Neuroinflammation, November 2017
DOI 10.1186/s12974-017-0997-0
Pubmed ID
Authors

Jie Qu, Xue-You Tao, Peng Teng, Yan Zhang, Ci-Liang Guo, Liang Hu, Yan-Ning Qian, Chun-Yi Jiang, Wen-Tao Liu

Abstract

Long-term use of morphine induces analgesic tolerance, which limits its clinical efficacy. Evidence indicated morphine-evoked neuroinflammation mediated by toll-like receptor 4 (TLR4) - NOD-like receptor protein 3 (NLRP3) inflammasome was important for morphine tolerance. In our study, we investigated whether other existing alternative pathways caused morphine-induced activation of TLR4 in microglia. We focused on heat shock protein 70 (HSP70), a damage-associated molecular pattern (DAMP), which was released from various cells upon stimulations under the control of KATP channel and bound with TLR4-inducing inflammation. Glibenclamide, a classic KATP channel blocker, can improve neuroinflammation by inhibiting the activation of NLRP3 inflammasome. Our present study investigated the effect and possible mechanism of glibenclamide in improving morphine tolerance via its specific inhibition on the release of HSP70 and activation of NLRP3 inflammasome induced by morphine. CD-1 mice were used for tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 and neural cell line SH-SY5Y were used to investigate the pharmacological effects and the mechanism of glibenclamide on morphine-induced neuroinflammation. The activation of microglia was accessed by immunofluorescence staining. Neuroinflammation-related cytokines were measured by western blot and real-time PCR. The level of HSP70 and related signaling pathway were evaluated by western blot and immunofluorescence staining. Morphine induced the release of HSP70 from neurons. The released HSP70 activated microglia and triggered TLR4-mediated inflammatory response, leading to the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) p65 and the activation of NLRP3 inflammasome. Moreover, anti-HSP70 neutralizing antibody partly attenuated chronic morphine tolerance. The secretion of HSP70 was under the control of MOR/AKT/KATP/ERK signal pathway. Glibenclamide as a classic KATP channel blocker markedly inhibited the release of HSP70 induced by morphine and suppressed HSP70-TLR4-NLRP3 inflammasome-mediated neuroinflammation, which consequently attenuated morphine tolerance. Our study indicated that morphine-induced extracellular HSP70 was an alternative way for the activation of TLR4-NLRP3 in analgesic tolerance. The release of HSP70 was regulated by MOR/AKT/KATP/ERK pathway. Our study suggested a promising target, KATP channel and a new leading compound, glibenclamide, for treating morphine tolerance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 27%
Student > Bachelor 7 13%
Researcher 7 13%
Student > Doctoral Student 3 6%
Student > Master 3 6%
Other 6 12%
Unknown 12 23%
Readers by discipline Count As %
Neuroscience 11 21%
Agricultural and Biological Sciences 6 12%
Biochemistry, Genetics and Molecular Biology 6 12%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Computer Science 2 4%
Other 6 12%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 March 2023.
All research outputs
#20,744,283
of 25,483,400 outputs
Outputs from Journal of Neuroinflammation
#2,380
of 2,951 outputs
Outputs of similar age
#340,184
of 446,664 outputs
Outputs of similar age from Journal of Neuroinflammation
#35
of 56 outputs
Altmetric has tracked 25,483,400 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,951 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,664 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.