↓ Skip to main content

Modular pathway engineering for the microbial production of branched-chain fatty alcohols

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, October 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#11 of 1,578)
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
8 news outlets
blogs
1 blog

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modular pathway engineering for the microbial production of branched-chain fatty alcohols
Published in
Biotechnology for Biofuels and Bioproducts, October 2017
DOI 10.1186/s13068-017-0936-4
Pubmed ID
Authors

Wen Jiang, James B. Qiao, Gayle J. Bentley, Di Liu, Fuzhong Zhang

Abstract

The intrinsic structural properties of branched long-chain fatty alcohols (BLFLs) in the range of C12 to C18 make them more suitable as diesel fuel replacements and for other industrial applications than their straight-chain counterparts. While microbial production of straight long-chain fatty alcohols has been achieved, biosynthesis of BLFLs has never been reported. In this work, we engineered four different biosynthetic pathways in Escherichia coli to produce BLFLs. We then employed a modular engineering approach to optimize the supply of α-keto acid precursors and produced either odd-chain or even-chain BLFLs with high selectivity, reaching 70 and 75% of total fatty alcohols, respectively. The acyl-ACP and alcohol-producing modules were also extensively optimized to balance enzyme expression level and ratio, resulting in a 6.5-fold improvement in BLFL titers. The best performing strain overexpressed 14 genes from 6 engineered operons and produced 350 mg/L of BLFLs in fed-batch fermenter. The modular engineering strategy successfully facilitated microbial production of BLFLs and allowed us to quickly optimize new BLFL pathway with high titers and product specificity. More generally, this work provides pathways and knowledge for the production of BLFLs and BLFL-related, industry-relevant chemicals in high titers and yields.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 33%
Researcher 7 13%
Student > Bachelor 6 12%
Professor 3 6%
Student > Postgraduate 3 6%
Other 7 13%
Unknown 9 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 35%
Agricultural and Biological Sciences 8 15%
Chemical Engineering 6 12%
Unspecified 2 4%
Engineering 2 4%
Other 4 8%
Unknown 12 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 59. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2017.
All research outputs
#725,351
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#11
of 1,578 outputs
Outputs of similar age
#15,403
of 339,185 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#1
of 42 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,185 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.