↓ Skip to main content

Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework

Overview of attention for article published in BMC Bioinformatics, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
68 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework
Published in
BMC Bioinformatics, December 2014
DOI 10.1186/s12859-014-0390-2
Pubmed ID
Authors

Lingjian Yang, Chrysanthi Ainali, Sophia Tsoka, Lazaros G Papageorgiou

Abstract

BackgroundApplying machine learning methods on microarray gene expression profiles for disease classification problems is a popular method to derive biomarkers, i.e. sets of genes that can predict disease state or outcome. Traditional approaches where expression of genes were treated independently suffer from low prediction accuracy and difficulty of biological interpretation. Current research efforts focus on integrating information on protein interactions through biochemical pathway datasets with expression profiles to propose pathway-based classifiers that can enhance disease diagnosis and prognosis. As most of the pathway activity inference methods in literature are either unsupervised or applied on two-class datasets, there is good scope to address such limitations by proposing novel methodologies.ResultsA supervised multiclass pathway activity inference method using optimisation techniques is reported. For each pathway expression dataset, patterns of its constituent genes are summarised into one composite feature, termed pathway activity, and a novel mathematical programming model is proposed to infer this feature as a weighted linear summation of expression of its constituent genes. Gene weights are determined by the optimisation model, in a way that the resulting pathway activity has the optimal discriminative power with regards to disease phenotypes. Classification is then performed on the resulting low-dimensional pathway activity profile.ConclusionsThe model was evaluated through a variety of published gene expression profiles that cover different types of disease. We show that not only does it improve classification accuracy, but it can also perform well in multiclass disease datasets, a limitation of other approaches from the literature. Desirable features of the model include the ability to control the maximum number of genes that may participate in determining pathway activity, which may be pre-specified by the user. Overall, this work highlights the potential of building pathway-based multi-phenotype classifiers for accurate disease diagnosis and prognosis problems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Malaysia 1 1%
Netherlands 1 1%
Brazil 1 1%
Unknown 65 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 28%
Researcher 14 21%
Student > Master 9 13%
Student > Bachelor 3 4%
Unspecified 2 3%
Other 8 12%
Unknown 13 19%
Readers by discipline Count As %
Computer Science 18 26%
Medicine and Dentistry 12 18%
Biochemistry, Genetics and Molecular Biology 6 9%
Mathematics 4 6%
Agricultural and Biological Sciences 3 4%
Other 11 16%
Unknown 14 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2015.
All research outputs
#14,791,252
of 22,772,779 outputs
Outputs from BMC Bioinformatics
#5,040
of 7,276 outputs
Outputs of similar age
#202,310
of 359,774 outputs
Outputs of similar age from BMC Bioinformatics
#95
of 147 outputs
Altmetric has tracked 22,772,779 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,276 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,774 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 147 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.