↓ Skip to main content

Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa

Overview of attention for article published in BMC Plant Biology, December 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa
Published in
BMC Plant Biology, December 2014
DOI 10.1186/s12870-014-0342-z
Pubmed ID
Authors

Issa Diédhiou, Alexandre Tromas, Maïmouna Cissoko, Krystelle Gray, Boris Parizot, Amandine Crabos, Nicole Alloisio, Pascale Fournier, Lorena Carro, Sergio Svistoonoff, Hassen Gherbi, Valérie Hocher, Diaga Diouf, Laurent Laplaze, Antony Champion

Abstract

BackgroundTrees belonging to the Casuarinaceae and Betulaceae families play an important ecological role and are useful tools in forestry for degraded land rehabilitation and reforestation. These functions are linked to their capacity to establish symbiotic relationships with a nitrogen-fixing soil bacterium of the genus Frankia. However, the molecular mechanisms controlling the establishment of these symbioses are poorly understood. The aim of this work was to identify potential transcription factors involved in the establishment and functioning of actinorhizal symbioses.ResultsWe identified 202 putative transcription factors by in silico analysis in 40 families in Casuarina glauca (Casuarinaceae) and 195 in 35 families in Alnus glutinosa (Betulaceae) EST databases. Based on published transcriptome datasets and quantitative PCR analysis, we found that 39% and 26% of these transcription factors were regulated during C. glauca and A. glutinosa-Frankia interactions, respectively. Phylogenetic studies confirmed the presence of common key transcription factors such as NSP, NF-YA and ERN-related proteins involved in nodule formation in legumes, which confirm the existence of a common symbiosis signaling pathway in nitrogen-fixing root nodule symbioses. We also identified an actinorhizal-specific transcription factor belonging to the zinc finger C1-2i subfamily we named CgZF1 in C. glauca and AgZF1 in A. glutinosa.ConclusionsWe identified putative nodulation-associated transcription factors with particular emphasis on members of the GRAS, NF-YA, ERF and C2H2 families. Interestingly, comparison of the non-legume and legume TF with signaling elements from actinorhizal species revealed a new subgroup of nodule-specific C2H2 TF that could be specifically involved in actinorhizal symbioses. In silico identification, transcript analysis, and phylogeny reconstruction of transcription factor families paves the way for the study of specific molecular regulation of symbiosis in response to Frankia infection.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 26%
Researcher 6 15%
Student > Master 6 15%
Student > Bachelor 2 5%
Professor 2 5%
Other 4 10%
Unknown 9 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 54%
Biochemistry, Genetics and Molecular Biology 6 15%
Psychology 1 3%
Medicine and Dentistry 1 3%
Engineering 1 3%
Other 0 0%
Unknown 9 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 November 2015.
All research outputs
#20,246,428
of 22,774,233 outputs
Outputs from BMC Plant Biology
#2,506
of 3,237 outputs
Outputs of similar age
#302,547
of 361,216 outputs
Outputs of similar age from BMC Plant Biology
#74
of 99 outputs
Altmetric has tracked 22,774,233 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,237 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,216 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 99 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.