↓ Skip to main content

PPARα is essential for retinal lipid metabolism and neuronal survival

Overview of attention for article published in BMC Biology, November 2017
Altmetric Badge

Mentioned by

twitter
13 X users

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PPARα is essential for retinal lipid metabolism and neuronal survival
Published in
BMC Biology, November 2017
DOI 10.1186/s12915-017-0451-x
Pubmed ID
Authors

Elizabeth A. Pearsall, Rui Cheng, Kelu Zhou, Yusuke Takahashi, H. Greg Matlock, Shraddha S. Vadvalkar, Younghwa Shin, Thomas W. Fredrick, Marin L. Gantner, Steven Meng, Zhongjie Fu, Yan Gong, Michael Kinter, Kenneth M. Humphries, Luke I. Szweda, Lois E. H. Smith, Jian-xing Ma

Abstract

Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα -/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 24%
Researcher 8 16%
Student > Bachelor 5 10%
Student > Master 5 10%
Professor 3 6%
Other 6 12%
Unknown 11 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 22%
Biochemistry, Genetics and Molecular Biology 10 20%
Medicine and Dentistry 5 10%
Neuroscience 4 8%
Engineering 2 4%
Other 5 10%
Unknown 13 26%