↓ Skip to main content

Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, November 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart
Published in
Critical Reviews in Diagnostic Imaging, November 2017
DOI 10.1186/s12968-017-0411-1
Pubmed ID
Authors

Zhengwei Zhou, Christopher Nguyen, Yuhua Chen, Jaime L. Shaw, Zixin Deng, Yibin Xie, James Dawkins, Eduardo Marbán, Debiao Li

Abstract

Previous studies have linked cardiac dysfunction to loss of metabolites in the creatine kinase system. Chemical exchange saturation transfer (CEST) is a promising metabolic cardiovascular magnetic resonance (CMR) imaging technique and has been applied in the heart for creatine mapping. However, current limitations include: (a) long scan time, (b) residual cardiac and respiratory motion, and (c) B0 field variations induced by respiratory motion. An improved CEST CMR technique was developed to address these problems. Animals with chronic myocardial infarction (N = 15) were scanned using the proposed CEST CMR technique and a late gadolinium enhancement (LGE)  sequence as reference. The major improvements of the CEST CMR technique are: (a) Images were acquired by single-shot FLASH, significantly increasing the scan efficiency. (b) All images were registered to reduce the residual motion. (c) The acquired Z-spectrum was analyzed using 3-pool-model Lorentzian-line fitting to generate CEST signal, reducing the impact of B0 field shifting due to respiratory motion. Feasibility of the technique was tested in a porcine model with chronic myocardial infarction. CEST signal was measured in the scar, border zone and remote myocardium. Initial studies were performed in one patient. In all animals, healthy remote myocardial CEST signal was elevated (0.16 ± 0.02) compared to infarct CEST signal (0.09 ± 0.02, P < 0.001) and the border zone (0.12 ± 0.02, P < 0.001). For both animal and patient studies, the hypointense regions in the CEST contrast maps closely match the bright areas in the LGE images. The proposed CEST CMR technique was developed to address long scan times, respiratory and cardiac motion, and B0 field variations. Lower CEST signal in bright region of the LGE image is consistent with the fact that myocardial infarction has reduced metabolic activity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 20%
Student > Ph. D. Student 8 16%
Other 5 10%
Student > Master 5 10%
Student > Doctoral Student 4 8%
Other 9 18%
Unknown 10 20%
Readers by discipline Count As %
Engineering 11 22%
Medicine and Dentistry 8 16%
Physics and Astronomy 6 12%
Biochemistry, Genetics and Molecular Biology 2 4%
Neuroscience 2 4%
Other 4 8%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2017.
All research outputs
#8,128,007
of 25,806,080 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#643
of 1,388 outputs
Outputs of similar age
#146,662
of 448,552 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#27
of 35 outputs
Altmetric has tracked 25,806,080 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,388 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,552 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.