↓ Skip to main content

A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks

Overview of attention for article published in BMC Bioinformatics, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks
Published in
BMC Bioinformatics, December 2017
DOI 10.1186/s12859-017-1877-4
Pubmed ID
Authors

Le Ou-Yang, Hong Yan, Xiao-Fei Zhang

Abstract

The accurate identification of protein complexes is important for the understanding of cellular organization. Up to now, computational methods for protein complex detection are mostly focus on mining clusters from protein-protein interaction (PPI) networks. However, PPI data collected by high-throughput experimental techniques are known to be quite noisy. It is hard to achieve reliable prediction results by simply applying computational methods on PPI data. Behind protein interactions, there are protein domains that interact with each other. Therefore, based on domain-protein associations, the joint analysis of PPIs and domain-domain interactions (DDI) has the potential to obtain better performance in protein complex detection. As traditional computational methods are designed to detect protein complexes from a single PPI network, it is necessary to design a new algorithm that could effectively utilize the information inherent in multiple heterogeneous networks. In this paper, we introduce a novel multi-network clustering algorithm to detect protein complexes from multiple heterogeneous networks. Unlike existing protein complex identification algorithms that focus on the analysis of a single PPI network, our model can jointly exploit the information inherent in PPI and DDI data to achieve more reliable prediction results. Extensive experiment results on real-world data sets demonstrate that our method can predict protein complexes more accurately than other state-of-the-art protein complex identification algorithms. In this work, we demonstrate that the joint analysis of PPI network and DDI network can help to improve the accuracy of protein complex detection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 18%
Researcher 3 18%
Student > Bachelor 3 18%
Student > Master 2 12%
Other 1 6%
Other 2 12%
Unknown 3 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 24%
Biochemistry, Genetics and Molecular Biology 3 18%
Computer Science 3 18%
Medicine and Dentistry 2 12%
Economics, Econometrics and Finance 1 6%
Other 0 0%
Unknown 4 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 January 2018.
All research outputs
#14,369,287
of 23,009,818 outputs
Outputs from BMC Bioinformatics
#4,755
of 7,315 outputs
Outputs of similar age
#236,474
of 437,935 outputs
Outputs of similar age from BMC Bioinformatics
#68
of 134 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,315 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,935 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 134 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.