↓ Skip to main content

Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods

Overview of attention for article published in BMC Bioinformatics, December 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods
Published in
BMC Bioinformatics, December 2017
DOI 10.1186/s12859-017-1875-6
Pubmed ID
Authors

Wen Zhang, Xiaopeng Zhu, Yu Fu, Junko Tsuji, Zhiping Weng

Abstract

Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints. Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method. In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 20%
Student > Bachelor 3 15%
Researcher 3 15%
Other 2 10%
Professor 1 5%
Other 2 10%
Unknown 5 25%
Readers by discipline Count As %
Computer Science 4 20%
Biochemistry, Genetics and Molecular Biology 3 15%
Agricultural and Biological Sciences 3 15%
Medicine and Dentistry 2 10%
Nursing and Health Professions 1 5%
Other 2 10%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2017.
All research outputs
#17,921,555
of 23,009,818 outputs
Outputs from BMC Bioinformatics
#5,968
of 7,315 outputs
Outputs of similar age
#305,732
of 437,935 outputs
Outputs of similar age from BMC Bioinformatics
#91
of 134 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,315 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,935 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 134 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.