↓ Skip to main content

Distinct metabolic responses of an ovarian cancer stem cell line

Overview of attention for article published in BMC Systems Biology, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
48 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Distinct metabolic responses of an ovarian cancer stem cell line
Published in
BMC Systems Biology, December 2014
DOI 10.1186/s12918-014-0134-y
Pubmed ID
Authors

Kathleen A Vermeersch, Lijuan Wang, John F McDonald, Mark P Styczynski

Abstract

BackgroundCancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues.ResultsMass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations.ConclusionsThe metabolic responses of an ovarian cancer cell line and its derived isogneic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to be considered in the design and early testing of such treatments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 47 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 31%
Researcher 8 17%
Student > Bachelor 6 13%
Student > Master 6 13%
Professor 2 4%
Other 6 13%
Unknown 5 10%
Readers by discipline Count As %
Medicine and Dentistry 13 27%
Agricultural and Biological Sciences 8 17%
Biochemistry, Genetics and Molecular Biology 5 10%
Engineering 5 10%
Chemistry 5 10%
Other 7 15%
Unknown 5 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 October 2015.
All research outputs
#14,792,181
of 22,775,504 outputs
Outputs from BMC Systems Biology
#600
of 1,142 outputs
Outputs of similar age
#198,140
of 353,309 outputs
Outputs of similar age from BMC Systems Biology
#26
of 50 outputs
Altmetric has tracked 22,775,504 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,142 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,309 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.