↓ Skip to main content

Feasibility of quantifying SDC2 methylation in stool DNA for early detection of colorectal cancer

Overview of attention for article published in Clinical Epigenetics, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
1 X user
patent
5 patents

Citations

dimensions_citation
92 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Feasibility of quantifying SDC2 methylation in stool DNA for early detection of colorectal cancer
Published in
Clinical Epigenetics, December 2017
DOI 10.1186/s13148-017-0426-3
Pubmed ID
Authors

Tae Jeong Oh, Hyun Il Oh, Yang Yei Seo, Dongjun Jeong, Changjin Kim, Hyoun Woo Kang, Yoon Dae Han, Hyun Cheol Chung, Nam Kyu Kim, Sungwhan An

Abstract

Colorectal cancer (CRC) screening is the most efficient strategy to reduce disease-related mortality. Frequent aberrant DNA methylation is known to occur in selected genes and early during CRC development, which has emerged as a new epigenetic biomarker for early detection of CRC. Previously, we reported that we identified that CpG sites of SDC2 were aberrantly methylated in tumor tissues of most CRC patients through comprehensive methylation analysis and demonstrated a high potential of quantification of SDC2 methylation in blood for early detection of colorectal cancer. In this study, we aim to investigate the feasibility of quantifying SDC2 methylation in stool DNA for the early detection of CRC. The objective of this study was to confirm a high frequency of SDC2 methylation in tumor tissues at various stages of CRC and investigate the feasibility of a quantitative test for SDC2 methylation in fecal DNA by highly sensitive and accurate real-time PCR for early detection of CRC. Bisulfite-pyrosequencing assay was performed to measure the SDC2 methylation status in tissue samples. For methylation analysis in stool DNA, a highly sensitive and accurate method was applied which implements consecutive two rounds of PCR consisting of unidirectional linear target enrichment (LTE) of SDC2 and quantitative methylation-specific real time PCR (qMSP) for SDC2, named as meSDC2 LTE-qMSP assay. Its limit of detection was 0.1% methylation (corresponding to ~ 6 copies in total ~ 6200 genome copies). Positive SDC2 methylation was observed in 100% of primary tumors, 90.6% of adenomatous polyps, 94.1% of hyperplastic polyps, and 0% of normal tissues. SDC2 methylation level also significantly (P < 0.01) increased according to the severity of lesions. In stool DNA test for SDC2 methylation by LTE-qMSP comparing CRC patients with various stages (I to IV) (n = 50) and precancerous lesions (n = 21) with healthy subjects (n = 22), the overall sensitivity was 90.0% for detecting CRC and 33.3% for detecting small polyps, with a specificity of 90.9%. Taken together, our result indicates that stool DNA-based SDC2 methylation test by LTE-qMSP is a potential noninvasive diagnostic tool for early detection of CRC.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 12%
Student > Bachelor 8 12%
Student > Ph. D. Student 7 11%
Student > Doctoral Student 4 6%
Lecturer 2 3%
Other 7 11%
Unknown 29 45%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 22%
Medicine and Dentistry 8 12%
Agricultural and Biological Sciences 3 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Engineering 2 3%
Other 5 8%
Unknown 31 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 January 2022.
All research outputs
#2,867,050
of 25,738,558 outputs
Outputs from Clinical Epigenetics
#193
of 1,449 outputs
Outputs of similar age
#60,312
of 448,151 outputs
Outputs of similar age from Clinical Epigenetics
#4
of 24 outputs
Altmetric has tracked 25,738,558 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,449 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.1. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,151 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.