↓ Skip to main content

The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals

Overview of attention for article published in BMC Ecology and Evolution, December 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 X users

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals
Published in
BMC Ecology and Evolution, December 2014
DOI 10.1186/s12862-014-0270-4
Pubmed ID
Authors

Arunkumar Krishnan, Rohit Dnyansagar, Markus Sällman Almén, Michael J Williams, Robert Fredriksson, Narayanan Manoj, Helgi B Schiöth

Abstract

BackgroundG protein-coupled receptors (GPCRs) play a central role in eukaryotic signal transduction. However, the GPCR component of this signalling system, at the early origins of metazoans is not fully understood. Here we aim to identify and classify GPCRs in Amphimedon queenslandica (sponge), a member of an earliest diverging metazoan lineage (Porifera). Furthermore, phylogenetic comparisons of sponge GPCRs with eumetazoan and bilaterian GPCRs will be essential to our understanding of the GPCR system at the roots of metazoan evolution.ResultsWe present a curated list of 220 GPCRs in the sponge genome after excluding incomplete sequences and false positives from our initial dataset of 282 predicted GPCR sequences obtained using Pfam search. Phylogenetic analysis reveals that the sponge genome contains members belonging to four of the five major GRAFS families including Glutamate (33), Rhodopsin (126), Adhesion (40) and Frizzled (3). Interestingly, the sponge Rhodopsin family sequences lack orthologous relationships with those found in eumetazoan and bilaterian lineages, since they clustered separately to form sponge specific groups in the phylogenetic analysis. This suggests that sponge Rhodopsins diverged considerably from that found in other basal metazoans. A few sponge Adhesions clustered basal to Adhesion subfamilies commonly found in most vertebrates, suggesting some Adhesion subfamilies may have diverged prior to the emergence of Bilateria. Furthermore, at least eight of the sponge Adhesion members have a hormone binding motif (HRM domain) in their N-termini, although hormones have yet to be identified in sponges. We also phylogenetically clarified that sponge has homologs of metabotropic glutamate (mGluRs) and GABA receptors.ConclusionOur phylogenetic comparisons of sponge GPCRs with other metazoan genomes suggest that sponge contains a significantly diversified set of GPCRs. This is evident at the family/subfamily level comparisons for most GPCR families, in particular for the Rhodopsin family of GPCRs. In summary, this study provides a framework to perform future experimental and comparative studies to further verify and understand the roles of GPCRs that predates the divergence of bilaterian and eumetazoan lineages.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 2 3%
United States 1 1%
Canada 1 1%
Brazil 1 1%
Unknown 65 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 26%
Researcher 9 13%
Student > Bachelor 7 10%
Professor 6 9%
Professor > Associate Professor 6 9%
Other 14 20%
Unknown 10 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 37%
Biochemistry, Genetics and Molecular Biology 23 33%
Neuroscience 4 6%
Unspecified 1 1%
Immunology and Microbiology 1 1%
Other 3 4%
Unknown 12 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2014.
All research outputs
#7,779,140
of 25,374,917 outputs
Outputs from BMC Ecology and Evolution
#1,778
of 3,714 outputs
Outputs of similar age
#97,129
of 360,051 outputs
Outputs of similar age from BMC Ecology and Evolution
#39
of 73 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,051 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.