↓ Skip to main content

Exome sequencing characterizes the somatic mutation spectrum of early serrated lesions in a patient with serrated polyposis syndrome (SPS)

Overview of attention for article published in Hereditary Cancer in Clinical Practice, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exome sequencing characterizes the somatic mutation spectrum of early serrated lesions in a patient with serrated polyposis syndrome (SPS)
Published in
Hereditary Cancer in Clinical Practice, November 2017
DOI 10.1186/s13053-017-0082-9
Pubmed ID
Authors

Sukanya Horpaopan, Jutta Kirfel, Sophia Peters, Michael Kloth, Robert Hüneburg, Janine Altmüller, Dmitriy Drichel, Margarete Odenthal, Glen Kristiansen, Christian Strassburg, Jacob Nattermann, Per Hoffmann, Peter Nürnberg, Reinhard Büttner, Holger Thiele, Philip Kahl, Isabel Spier, Stefan Aretz

Abstract

Serrated or Hyperplastic Polyposis Syndrome (SPS, HPS) is a yet poorly defined colorectal cancer (CRC) predisposition characterised by the occurrence of multiple and/or large serrated polyps throughout the colon. A serrated polyp-CRC sequence (serrated pathway) of CRC formation has been postulated, however, to date only few molecular signatures of serrated neoplasia (BRAF, KRAS, RNF43 mutations, CpG Island Methylation, MSI) have been described in a subset of SPS patients and neither the etiology of the syndrome nor the distinct genetic alterations during tumorigenesis have been identified. To identify somatic point mutations in potential novel candidate genes of SPS-associated lesions and the involved pathways we performed exome sequencing of eleven early serrated polyps obtained from a 41 year-old female patient with clinically confirmed SPS. For data filtering and analysis, standard pipelines were used. Somatic mutations were identified by comparison with leukocyte DNA and were validated by Sanger sequencing. The BRAF p.V600E or KRAS p.G12D mutation was identified in six polyps (~50%) and not found in polyps from the distal colon. In addition, we found seven unique rare somatic alterations of seven different genes in four serrated tumours, all of which are missense variants. The variant in ABI3BP and CATSPERB are predicted to be deleterious. No established cancer gene or candidate genes related to serrated tumorigenesis were affected. Somatic mutations seem to be rare events in early hyperplastic and serrated lesions of SPS patients. Neither frequently affected genes nor enrichment of specific pathways were observed. Thus, other alterations such as non-coding variants or epigenetic changes might be the major driving force of tumour progression in SPS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 24%
Other 3 12%
Student > Bachelor 2 8%
Student > Master 2 8%
Professor 1 4%
Other 3 12%
Unknown 8 32%
Readers by discipline Count As %
Medicine and Dentistry 8 32%
Biochemistry, Genetics and Molecular Biology 5 20%
Agricultural and Biological Sciences 4 16%
Nursing and Health Professions 1 4%
Unknown 7 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 December 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Hereditary Cancer in Clinical Practice
#215
of 260 outputs
Outputs of similar age
#385,580
of 446,404 outputs
Outputs of similar age from Hereditary Cancer in Clinical Practice
#4
of 4 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 260 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,404 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.