↓ Skip to main content

Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos

Overview of attention for article published in Plant Methods, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos
Published in
Plant Methods, December 2017
DOI 10.1186/s13007-017-0260-9
Pubmed ID
Authors

Srinivas Belide, Thomas Vanhercke, James Robertson Petrie, Surinder Pal Singh

Abstract

Sorghum (Sorghum bicolor L.) is one of the world's most important cereal crops grown for multiple applications and has been identified as a potential biofuel crop. Despite several decades of study, sorghum has been widely considered as a recalcitrant major crop for transformation due to accumulation of phenolic compounds, lack of model genotypes, low regeneration frequency and loss of regeneration potential through sub-cultures. Among different explants used for genetic transformation of sorghum, immature embryos are ideal over other explants. However, the continuous supply of quality immature embryos for transformation is labour intensive and expensive. In addition, transformation efficiencies are also influenced by environmental conditions (light and temperature). Despite these challenges, immature embryos remain the predominant choice because of their success rate and also due to non-availability of other dependable explants without compromising the transformation efficiency. We report here a robust genetic transformation method for sorghum (Tx430) using differentiating embryogenic calli (DEC) with nodular structures induced from immature embryos and maintained for more than a year without losing regeneration potential on modified MS media. The addition of lipoic acid (LA) to callus induction media along with optimized growth regulators increased callus induction frequency from 61.3 ± 3.2 to 79 ± 6.5% from immature embryos (1.5-2.0 mm in length) isolated 12-15 days after pollination. Similarly, the regeneration efficiency and the number of shoots from DEC tissue was enhanced by LA. The optimized regeneration system in combination with particle bombardment resulted in an average transformation efficiency (TE) of 27.2 or 46.6% based on the selection strategy, 25% to twofold higher TE than published reports in Tx430. Up to 100% putative transgenic shoots were positive for npt-II by PCR and 48% of events had < 3 copies of transgenes as determined by digital droplet PCR. Reproducibility of this method was demonstrated by generating ~ 800 transgenic plants using 10 different gene constructs. This protocol demonstrates significant improvements in both efficiency and ease of use over existing sorghum transformation methods using PDS, also enables quick hypothesis testing in the production of various high value products in sorghum.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 14%
Researcher 9 13%
Student > Ph. D. Student 9 13%
Student > Bachelor 6 9%
Student > Doctoral Student 3 4%
Other 4 6%
Unknown 29 41%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 33%
Biochemistry, Genetics and Molecular Biology 16 23%
Unspecified 1 1%
Economics, Econometrics and Finance 1 1%
Unknown 29 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2017.
All research outputs
#13,499,741
of 23,011,300 outputs
Outputs from Plant Methods
#621
of 1,088 outputs
Outputs of similar age
#215,027
of 439,767 outputs
Outputs of similar age from Plant Methods
#21
of 42 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,088 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,767 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.