↓ Skip to main content

Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell

Overview of attention for article published in BMC Biology, December 2017
Altmetric Badge

Mentioned by

twitter
13 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell
Published in
BMC Biology, December 2017
DOI 10.1186/s12915-017-0453-8
Pubmed ID
Authors

Hua Wang, Kunshan Zhang, Yifei Liu, Yudong Fu, Shan Gao, Peng Gong, Haiying Wang, Zhongcheng Zhou, Ming Zeng, Zhenfeng Wu, Yu Sun, Tong Chen, Siguang Li, Lin Liu

Abstract

Telomere length heterogeneity has been detected in various cell types, including stem cells and cancer cells. Cell heterogeneity in pluripotent stem cells, such as embryonic stem cells (ESCs), is of particular interest; however, the implication and mechanisms underlying the heterogeneity remain to be understood. Single-cell analysis technology has recently been developed and effectively employed to investigate cell heterogeneity. Yet, methods that can simultaneously measure telomere length and analyze the global transcriptome in the same cell have not been available until now. We have established a robust method that can simultaneously measure telomere length coupled with RNA-sequencing analysis (scT&R-seq) in the same human ESC (hESC). Using this method, we show that telomere length varies with pluripotency state. Compared to those with long telomere, hESCs with short telomeres exhibit the lowest expressions of TERF1/TRF1, and ZFP42/REX1, PRDM14 and NANOG markers for pluripotency, suggesting that these hESCs are prone to exit from the pluripotent state. Interestingly, hESCs ubiquitously express NOP10 and DKC1, stabilizing components of telomerase complexes. Moreover, new candidate genes, such as MELK, MSH6, and UBQLN1, are highly expressed in the cluster of cells with long telomeres and higher expression of known pluripotency markers. Notably, short telomere hESCs exhibit higher oxidative phosphorylation primed for lineage differentiation, whereas long telomere hESCs show elevated glycolysis, another key feature for pluripotency. Telomere length is a marker of the metabolic activity and pluripotency state of individual hESCs. Single cell analysis of telomeres and RNA-sequencing can be exploited to further understand the molecular mechanisms of telomere heterogeneity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 21%
Researcher 10 19%
Student > Master 9 17%
Student > Ph. D. Student 7 13%
Student > Doctoral Student 3 6%
Other 4 8%
Unknown 8 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 31%
Agricultural and Biological Sciences 13 25%
Medicine and Dentistry 4 8%
Engineering 3 6%
Neuroscience 3 6%
Other 3 6%
Unknown 10 19%