↓ Skip to main content

Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas

Overview of attention for article published in Respiratory Research, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas
Published in
Respiratory Research, December 2014
DOI 10.1186/s12931-014-0160-8
Pubmed ID
Authors

Emily Van de Laar, Monica Clifford, Stefan Hasenoeder, Bo Ram Kim, Dennis Wang, Sharon Lee, Josh Paterson, Nancy M Vu, Thomas K Waddell, Shaf Keshavjee, Ming-Sound Tsao, Laurie Ailles, Nadeem Moghal

Abstract

BackgroundThe large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior.MethodsWe used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay.ResultsWe identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~¿>¿13%) or less abundant (~ <¿6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells.ConclusionThis work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 1 1%
Unknown 75 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 17%
Student > Ph. D. Student 11 14%
Student > Bachelor 9 12%
Researcher 9 12%
Student > Doctoral Student 5 7%
Other 10 13%
Unknown 19 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 25%
Medicine and Dentistry 16 21%
Biochemistry, Genetics and Molecular Biology 10 13%
Immunology and Microbiology 4 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 6 8%
Unknown 19 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 January 2015.
All research outputs
#16,721,717
of 25,374,647 outputs
Outputs from Respiratory Research
#2,055
of 3,062 outputs
Outputs of similar age
#209,693
of 359,112 outputs
Outputs of similar age from Respiratory Research
#47
of 47 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,112 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.