↓ Skip to main content

The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency

Overview of attention for article published in BMC Plant Biology, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency
Published in
BMC Plant Biology, December 2017
DOI 10.1186/s12870-017-1201-5
Pubmed ID
Authors

Zhifeng Lu, Yonghui Pan, Wenshi Hu, Rihuan Cong, Tao Ren, Shiwei Guo, Jianwei Lu

Abstract

Most studies of photosynthesis in chlorenchymas under potassium (K) deficiency focus exclusively on leaves; however, little information is available on the physiological role of K on reproductive structures, which play a critical role in plant carbon gain. Brassica napus L., a natural organ-succession species, was used to compare the morphological, anatomical and photo-physiological differences between leaves and siliques exposed to K-deficiency. Compared to leaves, siliques displayed considerably lower CO2 assimilation rates (A) under K-deficient (-K) or sufficient conditions (+K), limited by decreased stomatal conductance (g s), apparent quantum yield (α) and carboxylation efficiency (CE), as well as the ratio of the maximum rate of electron transport (J max) and the maximum rate of ribulose 1,5-bisphosphate (RuBP) carboxylation (V cmax). The estimated J max, V cmax and α of siliques were considerably lower than the theoretical value calculated on the basis of a similar ratio between these parameters and chlorophyll concentration (i.e. J max/Chl, V cmax/Chl and α/Chl) to leaves, of which the gaps between estimated- and theoretical-J max was the largest. In addition, the average ratio of J max to V cmax was 16.1% lower than that of leaves, indicating that the weakened electron transport was insufficient to meet the requirements for carbon assimilation. Siliques contained larger but fewer stoma, tightly packed cross-section with larger cells and fewer intercellular air spaces, fewer and smaller chloroplasts and thin grana lamellae, which might be linked to the reduction in light capture and CO2 diffusion. K-deficiency significantly decreased leaf and silique A under the combination of down-regulated stomatal size and g s, chloroplast number, α, V cmax and J max, while the CO2 diffusion distance between chloroplast and cell wall (D chl-cw) was enhanced. Siliques were more sensitive than leaves to K-starvation, exhibiting smaller reductions in tissue K and parameters such as g s, V cmax, J max and D chl-cw. Siliques had substantially smaller A than leaves, which was attributed to less efficient functioning of the photosynthetic apparatus, especially the integrated limitations of biochemical processes (J max and V cmax) and α; however, siliques were slightly less sensitive to K deficiency.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Researcher 5 13%
Student > Master 4 10%
Other 2 5%
Professor > Associate Professor 2 5%
Other 5 13%
Unknown 14 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 53%
Sports and Recreations 2 5%
Biochemistry, Genetics and Molecular Biology 1 3%
Environmental Science 1 3%
Unknown 15 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2017.
All research outputs
#20,454,971
of 23,011,300 outputs
Outputs from BMC Plant Biology
#2,548
of 3,283 outputs
Outputs of similar age
#375,220
of 439,919 outputs
Outputs of similar age from BMC Plant Biology
#76
of 93 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,283 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,919 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.