↓ Skip to main content

Gimatecan exerts potent antitumor activity against gastric cancer in vitro and in vivo via AKT and MAPK signaling pathways

Overview of attention for article published in Journal of Translational Medicine, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gimatecan exerts potent antitumor activity against gastric cancer in vitro and in vivo via AKT and MAPK signaling pathways
Published in
Journal of Translational Medicine, December 2017
DOI 10.1186/s12967-017-1360-z
Pubmed ID
Authors

Zuhua Chen, Zhentao Liu, Wenwen Huang, Zhongwu Li, Jianling Zou, Jingyuan Wang, Xiaoting Lin, Beifang Li, Dongshao Chen, Yanting Hu, Jiafu Ji, Jing Gao, Lin Shen

Abstract

We investigated antitumor activity and underlying mechanisms of DNA topoisomerase I (TopI) inhibitor gimatecan and irinotecan in gastric cancer (GC) in vitro cell lines and in vivo patient-derived xenograft (PDX) models. GC cell lines SNU-1, HGC27, MGC803 and NCI-N87 were used to evaluate cell viability and apoptosis after gimatecan or irinotecan treatment, using a cell proliferation assay and flow cytometry, respectively. DNA TopI expression and critical molecules of PI3K/AKT, MAPK and apoptosis signaling pathways were analyzed with western blot. For in vivo studies, five PDXs models were treated with gimatecan or irinotecan to assess its antitumor activity. Immunohistochemistry staining of Ki-67 was performed after mice were sacrificed. Gimatecan inhibited the proliferation of GC cells in vitro in a dose- and time-dependent manner by inducing apoptosis, and gimatecan had greater inhibitory effects than irinotecan. In addition, both gimatecan and irinotecan demonstrated significant tumor growth inhibition in in vivo PDX models. Gimatecan treatment significantly inhibited the expression of DNA TopI, phosphorylated AKT (pAKT), phosphorylated MEK (pMEK) and phosphorylated ERK (pERK). Meanwhile, gimatecan could also activate the JNK2 and p38 MAPK pathway as indicated by upregulation of phosphorylated p38 MAPK (p-p38) and phosphorylated JNK2 (pJNK2). For the first time, we have shown that the antitumor activity of gimatecan in GC via suppressing AKT and ERK pathway and activating JNK2 and p38 MAPK pathway, which indicated that gimatecan might be an alternative to irinotecan in the treatment of GC.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 17%
Researcher 3 17%
Student > Postgraduate 1 6%
Student > Doctoral Student 1 6%
Unknown 10 56%
Readers by discipline Count As %
Medicine and Dentistry 4 22%
Biochemistry, Genetics and Molecular Biology 2 11%
Neuroscience 1 6%
Agricultural and Biological Sciences 1 6%
Unknown 10 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2017.
All research outputs
#20,454,971
of 23,011,300 outputs
Outputs from Journal of Translational Medicine
#3,339
of 4,024 outputs
Outputs of similar age
#374,622
of 439,212 outputs
Outputs of similar age from Journal of Translational Medicine
#63
of 66 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,024 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,212 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 66 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.