↓ Skip to main content

Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P

Overview of attention for article published in Journal of Neuroinflammation, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P
Published in
Journal of Neuroinflammation, December 2017
DOI 10.1186/s12974-017-1012-5
Pubmed ID
Authors

Amanda R. Burmeister, M. Brittany Johnson, Vinita S. Chauhan, Megan J. Moerdyk-Schauwecker, Ada D. Young, Ian D. Cooley, Alejandra N. Martinez, Geeta Ramesh, Mario T. Philipp, Ian Marriott

Abstract

The tachykinin substance P (SP) is recognized to exacerbate inflammation at peripheral sites via its target receptor, neurokinin 1 receptor (NK-1R), expressed by leukocytes. More recently, SP/NK-1R interactions have been associated with severe neuroinflammation and neuronal damage. We have previously demonstrated that NK-1R antagonists can limit neuroinflammatory damage in a mouse model of bacterial meningitis. Furthermore, we have since shown that these agents can attenuate bacteria-induced neuronal and glial inflammatory mediator production in nonhuman primate (NHP) brain explants and isolated neuronal cells, and following in vivo infection. In the present study, we have assessed the ability of NHP brain explants, primary human microglia and astrocytes, and immortalized human glial cell lines to express NK-1R isoforms. We have utilized RT-PCR, immunoblot analysis, immunofluorescent microscopy, and/or flow cytometric analysis, to quantify NK-1R expression in each, at rest, or following bacterial challenge. Furthermore, we have assessed the ability of human microglia to respond to SP by immunoblot analysis of NF-kB nuclear translocation and determined the ability of this neuropeptide to augment inflammatory cytokine release and neurotoxic mediator production by human astrocytes using an ELISA and a neuronal cell toxicity assay, respectively. We demonstrate that human microglial and astrocytic cells as well as NHP brain tissue constitutively express robust levels of the full-length NK-1R isoform. In addition, we demonstrate that the expression of NK-1R by human astrocytes can be further elevated following exposure to disparate bacterial pathogens or their components. Importantly, we have demonstrated that NK-1R is functional in both human microglia and astrocytes and show that SP can augment the inflammatory and/or neurotoxic immune responses of glial cells to disparate and clinically relevant bacterial pathogens. The robust constitutive and functional expression of the full-length NK-1R isoform by human microglia and astrocytes, and the ability of SP to augment inflammatory signaling pathways and mediator production by these cells, support the contention that SP/NK-1R interactions play a significant role in the damaging neuroinflammation associated with conditions such as bacterial meningitis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 27%
Researcher 7 17%
Student > Master 6 15%
Student > Bachelor 5 12%
Student > Doctoral Student 3 7%
Other 3 7%
Unknown 6 15%
Readers by discipline Count As %
Neuroscience 9 22%
Biochemistry, Genetics and Molecular Biology 7 17%
Medicine and Dentistry 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Agricultural and Biological Sciences 3 7%
Other 5 12%
Unknown 10 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 August 2018.
All research outputs
#14,960,787
of 23,011,300 outputs
Outputs from Journal of Neuroinflammation
#1,673
of 2,654 outputs
Outputs of similar age
#252,637
of 439,212 outputs
Outputs of similar age from Journal of Neuroinflammation
#28
of 62 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,654 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,212 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.