↓ Skip to main content

Identification of recent cases of hepatitis C virus infection using physical-chemical properties of hypervariable region 1 and a radial basis function neural network classifier

Overview of attention for article published in BMC Genomics, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
1 blog
twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of recent cases of hepatitis C virus infection using physical-chemical properties of hypervariable region 1 and a radial basis function neural network classifier
Published in
BMC Genomics, December 2017
DOI 10.1186/s12864-017-4269-2
Pubmed ID
Authors

James Lara, Mahder Teka, Yury Khudyakov

Abstract

Identification of acute or recent hepatitis C virus (HCV) infections is important for detecting outbreaks and devising timely public health interventions for interruption of transmission. Epidemiological investigations and chemistry-based laboratory tests are 2 main approaches that are available for identification of acute HCV infection. However, owing to complexity, both approaches are not efficient. Here, we describe a new sequence alignment-free method to discriminate between recent (R) and chronic (C) HCV infection using next-generation sequencing (NGS) data derived from the HCV hypervariable region 1 (HVR1). Using dinucleotide auto correlation (DAC), we identified physical-chemical (PhyChem) features of HVR1 variants. Significant (p < 9.58 × 10-4) differences in the means and frequency distributions of PhyChem features were found between HVR1 variants sampled from patients with recent vs chronic (R/C) infection. Moreover, the R-associated variants were found to occupy distinct and discrete PhyChem spaces. A radial basis function neural network classifier trained on the PhyChem features of intra-host HVR1 variants accurately classified R/C-HVR1 variants (classification accuracy (CA) = 94.85%; area under the ROC curve, AUROC = 0.979), in 10-fold cross-validation). The classifier was accurate in assigning individual HVR1 variants to R/C-classes in the testing set (CA = 84.15%; AUROC = 0.912) and in detection of infection duration (R/C-class) in patients (CA = 88.45%). Statistical tests and evaluation of the classifier on randomly-labeled datasets indicate that classifiers' CA is robust (p < 0.001) and unlikely due to random correlations (CA = 59.04% and AUROC = 0.50). The PhyChem features of intra-host HVR1 variants are strongly associated with the duration of HCV infection. Application of the PhyChem biomarkers to models for detection of the R/C-state of HCV infection in patients offers a new opportunity for detection of outbreaks and for molecular surveillance. The method will be available at https://webappx.cdc.gov/GHOST/ to the authenticated users of Global Hepatitis Outbreak and Surveillance Technology (GHOST) for further testing and validation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 19%
Student > Bachelor 4 19%
Researcher 3 14%
Student > Master 2 10%
Other 1 5%
Other 1 5%
Unknown 6 29%
Readers by discipline Count As %
Computer Science 3 14%
Biochemistry, Genetics and Molecular Biology 2 10%
Immunology and Microbiology 2 10%
Nursing and Health Professions 2 10%
Medicine and Dentistry 2 10%
Other 2 10%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2021.
All research outputs
#4,198,695
of 25,257,066 outputs
Outputs from BMC Genomics
#1,555
of 11,206 outputs
Outputs of similar age
#82,781
of 453,085 outputs
Outputs of similar age from BMC Genomics
#39
of 228 outputs
Altmetric has tracked 25,257,066 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,206 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 453,085 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 228 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.