↓ Skip to main content

Bacillus anthracis gamma phage lysis among soil bacteria: an update on test specificity

Overview of attention for article published in BMC Research Notes, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bacillus anthracis gamma phage lysis among soil bacteria: an update on test specificity
Published in
BMC Research Notes, November 2017
DOI 10.1186/s13104-017-2919-8
Pubmed ID
Authors

Cari B. Kolton, Nicole L. Podnecky, Sean V. Shadomy, Jay E. Gee, Alex R. Hoffmaster

Abstract

Bacillus anthracis, which causes anthrax in humans and animals, is enzootic in parts of the U.S. state of Texas where cases are typically reported in animals annually. The gamma phage lysis assay is a common diagnostic method for identification of B. anthracis and is based on the bacterium's susceptibility to lysis. This test has been shown to be 97% specific for B. anthracis, as a small number of strains of other Bacillus spp. are known to be susceptible. In this study, we evaluated the performance of a combination of B. anthracis diagnostic assays on 700 aerobic, spore-forming isolates recovered from soil collected in Texas. These assays include phenotypic descriptions, gamma phage susceptibility, and real-time polymerase chain reaction specific for B. anthracis. Gamma phage-susceptible isolates were also tested using cell wall and capsule direct fluorescent-antibody assays specific for B. anthracis. Gamma phage-susceptible isolates that were ruled out as B. anthracis were identified by 16S rRNA gene sequencing. We identified 29 gamma phage-susceptible isolates. One was confirmed as B. anthracis, while the other 28 isolates were ruled out for B. anthracis by the other diagnostic tests. Using 16S rRNA gene sequencing results, we identified these isolates as members of the B. cereus group, Bacillus sp. (not within B. cereus group), Lysinibacillus spp., and Solibacillus silvestris. Based on these results, we report a specificity of 96% for gamma phage lysis as a diagnostic test for B. anthracis, and identified susceptible isolates outside the Bacillus genus. In this study we found gamma phage susceptibility to be consistent with previously reported results. However, we identified non-B. anthracis environmental isolates (including isolates from genera other than Bacillus) that are susceptible to gamma phage lysis. To date, susceptibility to gamma phage lysis has not been reported in genera other than Bacillus. Though these isolates are not of clinical origin, description of unexpected positives is important, especially as new diagnostic assays for B. anthracis are being developed based on gamma phage lysis or gamma phage proteins.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 17%
Researcher 6 17%
Student > Bachelor 5 14%
Student > Postgraduate 2 6%
Student > Ph. D. Student 2 6%
Other 3 9%
Unknown 11 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 17%
Immunology and Microbiology 5 14%
Veterinary Science and Veterinary Medicine 4 11%
Medicine and Dentistry 3 9%
Engineering 2 6%
Other 2 6%
Unknown 13 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 June 2018.
All research outputs
#14,087,536
of 23,012,811 outputs
Outputs from BMC Research Notes
#1,871
of 4,283 outputs
Outputs of similar age
#157,622
of 294,542 outputs
Outputs of similar age from BMC Research Notes
#60
of 163 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,283 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,542 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.