↓ Skip to main content

Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study

Overview of attention for article published in Journal of Translational Medicine, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
51 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study
Published in
Journal of Translational Medicine, December 2017
DOI 10.1186/s12967-017-1359-5
Pubmed ID
Authors

Michelle D. Robinson, Ina Mishra, Sneha Deodhar, Vipulkumar Patel, Katrina V. Gordon, Raul Vintimilla, Kim Brown, Leigh Johnson, Sid O’Bryant, David P. Cistola

Abstract

Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that characterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial characterization of an atypical new biomarker that detects these early conditions with just one measurement. Water T2, measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exquisitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic human subjects, the association of plasma and serum water T2 values with over 130 blood biomarkers was analyzed using bivariate, multivariate and logistic regression. Plasma and serum water T2 exhibited strong bivariate correlations with markers of insulin, lipids, inflammation, coagulation and electrolyte balance. After correcting for confounders, low water T2 values were independently and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T2 exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study population) were identified by low water T2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T2 values were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and lipoproteins in plasma. Water T2 detects a constellation of early abnormalities associated with metabolic syndrome, providing a global view of an individual's metabolic health. It circumvents the pitfalls associated with fasting glucose and hemoglobin A1c and the limitations of the current clinical criteria for metabolic syndrome. Water T2 shows promise as an early, global and practical screening tool for the identification of individuals at risk for diabetes and atherosclerosis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 14%
Other 5 10%
Researcher 5 10%
Student > Doctoral Student 5 10%
Student > Ph. D. Student 4 8%
Other 12 24%
Unknown 13 25%
Readers by discipline Count As %
Medicine and Dentistry 11 22%
Nursing and Health Professions 6 12%
Chemistry 5 10%
Psychology 3 6%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 9 18%
Unknown 15 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 March 2020.
All research outputs
#15,442,234
of 24,482,039 outputs
Outputs from Journal of Translational Medicine
#2,007
of 4,385 outputs
Outputs of similar age
#248,795
of 449,824 outputs
Outputs of similar age from Journal of Translational Medicine
#32
of 64 outputs
Altmetric has tracked 24,482,039 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,385 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,824 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.