↓ Skip to main content

Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer

Overview of attention for article published in Cell Communication and Signaling, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer
Published in
Cell Communication and Signaling, December 2017
DOI 10.1186/s12964-017-0206-x
Pubmed ID
Authors

Nicoletta Ferrari, Ilaria Granata, Matteo Capaia, Marina Piccirillo, Mario Rosario Guarracino, Roberta Venè, Antonella Brizzolara, Andrea Petretto, Elvira Inglese, Martina Morini, Simonetta Astigiano, Adriana Agnese Amaro, Francesco Boccardo, Cecilia Balbi, Paola Barboro

Abstract

Prostate cancer (PCa), the second most common cancer affecting men worldwide, shows a broad spectrum of biological and clinical behaviour representing the epiphenomenon of an extreme heterogeneity. Androgen deprivation therapy is the mainstay of treatment for advanced forms but after few years the majority of patients progress to castration-resistant prostate cancer (CRPC), a lethal form that poses considerable therapeutic challenges. Western blotting, immunocytochemistry, invasion and reporter assays, and in vivo studies were performed to characterize androgen resistant sublines phenotype in comparison to the parental cell line LNCaP. RNA microarray, mass spectrometry, integrative transcriptomic and proteomic differential analysis coupled with GeneOntology and multivariate analyses were applied to identify deregulated genes and proteins involved in CRPC evolution. Treating the androgen-responsive LNCaP cell line for over a year with 10 μM bicalutamide both in the presence and absence of 0.1 nM 5-α-dihydrotestosterone (DHT) we obtained two cell sublines, designated PDB and MDB respectively, presenting several analogies with CRPC. Molecular and functional analyses of PDB and MDB, compared to the parental cell line, showed that both resistant cell lines were PSA low/negative with comparable levels of nuclear androgen receptor devoid of activity due to altered phosphorylation; cell growth and survival were dependent on AKT and p38MAPK activation and PARP-1 overexpression; their malignant phenotype increased both in vitro and in vivo. Performing bioinformatic analyses we highlighted biological processes related to environmental and stress adaptation supporting cell survival and growth. We identified 15 proteins that could direct androgen-resistance acquisition. Eleven out of these 15 proteins were closely related to biological processes involved in PCa progression. Our models suggest that environmental factors and epigenetic modulation can activate processes of phenotypic adaptation driving drug-resistance. The identified key proteins of these adaptive phenotypes could be eligible targets for innovative therapies as well as molecules of prognostic and predictive value.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 23%
Student > Ph. D. Student 5 14%
Student > Bachelor 4 11%
Researcher 3 9%
Professor > Associate Professor 2 6%
Other 2 6%
Unknown 11 31%
Readers by discipline Count As %
Medicine and Dentistry 8 23%
Biochemistry, Genetics and Molecular Biology 5 14%
Agricultural and Biological Sciences 2 6%
Nursing and Health Professions 1 3%
Unspecified 1 3%
Other 4 11%
Unknown 14 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2017.
All research outputs
#20,456,235
of 23,012,811 outputs
Outputs from Cell Communication and Signaling
#936
of 1,010 outputs
Outputs of similar age
#375,003
of 439,775 outputs
Outputs of similar age from Cell Communication and Signaling
#11
of 14 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,010 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,775 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.