↓ Skip to main content

Quinones are growth factors for the human gut microbiota

Overview of attention for article published in Microbiome, December 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

blogs
1 blog
twitter
23 X users
patent
3 patents
facebook
3 Facebook pages

Citations

dimensions_citation
73 Dimensions

Readers on

mendeley
182 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quinones are growth factors for the human gut microbiota
Published in
Microbiome, December 2017
DOI 10.1186/s40168-017-0380-5
Pubmed ID
Authors

Kathrin Fenn, Philip Strandwitz, Eric J. Stewart, Eric Dimise, Sarah Rubin, Shreya Gurubacharya, Jon Clardy, Kim Lewis

Abstract

The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria from the human gut microbiome. These organisms are taxonomically diverse, including members of the genus Faecalibacterium, Bacteroides, Bilophila, Gordonibacter, and Sutterella. This suggests that loss of quinone biosynthesis happened independently in many lineages of the human microbiota. Quinones can be used to improve existing bacterial growth media or modulate the human gut microbiota by encouraging the growth of important symbionts, such as Faecalibacterium species.

X Demographics

X Demographics

The data shown below were collected from the profiles of 23 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 182 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 182 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 45 25%
Student > Ph. D. Student 33 18%
Student > Master 20 11%
Student > Bachelor 16 9%
Student > Doctoral Student 10 5%
Other 24 13%
Unknown 34 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 43 24%
Immunology and Microbiology 36 20%
Agricultural and Biological Sciences 23 13%
Medicine and Dentistry 9 5%
Engineering 8 4%
Other 21 12%
Unknown 42 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 31. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2023.
All research outputs
#1,187,258
of 24,127,822 outputs
Outputs from Microbiome
#392
of 1,595 outputs
Outputs of similar age
#28,326
of 448,382 outputs
Outputs of similar age from Microbiome
#17
of 45 outputs
Altmetric has tracked 24,127,822 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,595 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 39.5. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,382 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.