↓ Skip to main content

Apoptosis and necroptosis of mouse hippocampal and parenchymal astrocytes, microglia and neurons caused by Angiostrongylus cantonensis infection

Overview of attention for article published in Parasites & Vectors, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Apoptosis and necroptosis of mouse hippocampal and parenchymal astrocytes, microglia and neurons caused by Angiostrongylus cantonensis infection
Published in
Parasites & Vectors, December 2017
DOI 10.1186/s13071-017-2565-y
Pubmed ID
Authors

Zhang Mengying, Xu Yiyue, Pan Tong, Hu Yue, Yanin Limpanont, Huang Ping, Kamolnetr Okanurak, Wu Yanqi, Paron Dekumyoy, Zhou Hongli, Dorn Watthanakulpanich, Wu Zhongdao, Wang Zhi, Lv Zhiyue

Abstract

Angiostrongylus cantonensis has been the only parasite among Angiostrongylidae to cause human central nervous system infection characterized by eosinophilic meningitis or meningoencephalitis. The mechanism of the extensive neurological impairments of hosts caused by A. cantonensis larvae remains unclear. The aim of the present study was to investigate apoptosis, necroptosis and autophagy in the brains of mice infected with A. cantonensis, which will be valuable for better understanding the pathogenesis of angiostrongyliasis cantonensis. Functional and histological neurological impairments of brain tissues from mice infected with A. cantonensis were measured by the Morris water maze test and haematoxylin and eosin (H&E) staining, respectively. The transcriptional and translational levels of apoptosis-, necroptosis- and autophagy-related genes were quantified by quantitative real-time polymerase chain reaction (RT-PCR), and assessed by western blot and immunohistochemistry (IHC) analysis. Apoptotic and necroptotic cells and their distributions in infected brain tissues were analysed by flow cytometry and transmission electron microscopy (TEM). Inflammatory response in the central nervous system deteriorated as A. cantonensis infection evolved, as characterized by abundant inflammatory cell infiltration underneath the meninges, which peaked at 21 days post-infection (dpi). The learning and memory capacities of the mice were significantly decreased at 14 dpi, indicating prominent impairment of their cognitive functions. Compared with those of the control group, the mRNA levels of caspase-3, -4, -6, and RIP3 and the protein levels of caspase-4, cleaved caspase-3, cleaved caspase-6, RIP3, and pRIP3 were obviously elevated. However, no changes in the mRNA or protein levels of FADD, Beclin-1 or LC3B were evident, indicating that apoptosis and necroptosis, but not autophagy, occurred in the brain tissues of mice infected with A. cantonensis. The quantitative RT-PCR, western blot, IHC, flow cytometry and TEM results further revealed the apoptotic and necroptotic microglia, astrocytes and neurons in the parenchymal and hippocampal regions of infected mice. To our knowledge, we showed for the first time that A. cantonensis infection causes the apoptosis and necroptosis of microglia and astrocytes in the parenchymal and hippocampal regions of host brain tissues, further demonstrating the pathogenesis of A. cantonensis infection and providing potential therapeutic targets for the management of angiostrongyliasis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 19%
Researcher 7 17%
Student > Ph. D. Student 4 10%
Other 3 7%
Professor > Associate Professor 3 7%
Other 9 21%
Unknown 8 19%
Readers by discipline Count As %
Medicine and Dentistry 12 29%
Agricultural and Biological Sciences 6 14%
Biochemistry, Genetics and Molecular Biology 4 10%
Neuroscience 3 7%
Immunology and Microbiology 3 7%
Other 4 10%
Unknown 10 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 December 2017.
All research outputs
#20,456,235
of 23,012,811 outputs
Outputs from Parasites & Vectors
#4,882
of 5,503 outputs
Outputs of similar age
#376,067
of 440,404 outputs
Outputs of similar age from Parasites & Vectors
#151
of 173 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,503 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,404 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.