↓ Skip to main content

Biomass pyrolysis liquid to citric acid via 2-step bioconversion

Overview of attention for article published in Microbial Cell Factories, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biomass pyrolysis liquid to citric acid via 2-step bioconversion
Published in
Microbial Cell Factories, December 2014
DOI 10.1186/s12934-014-0182-4
Pubmed ID
Authors

Zhiguang Yang, Zhihui Bai, Hongyan Sun, Zhisheng Yu, Xingxing Li, Yifei Guo, Hongxun Zhang

Abstract

BackgroundThe use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic biomass into desirable value added products. However, such bioprocesses require tolerance to inhibitory compounds generated during pretreatment of biomass. In this study, the process of sequential two-step bio-conversion of biomass pyrolysis liquid containing levoglucosan (LG) to citric acid without chemical detoxification has been explored, which can greatly improve the utilization efficiency of lignocellulosic biomass.ResultsThe sequential two-step bio-conversion of corn stover pyrolysis liquid to citric acid has been established. The first step conversion by Phanerochaete chrysosporium (P. chrysosporium) is desirable to decrease the content of other compounds except levoglucosan as a pretreatment for the second conversion. The remaining levoglucosan in solution was further converted into citric acid by Aspergillus niger (A. niger) CBX-209. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology. Under experimental conditions, levoglucosan yield is 12% based on the feedstock and the citric acid yield can reach 82.1% based on the levoglucosan content in the pyrolysis liquid (namely 82.1 g of citric acid per 100 g of levoglucosan).ConclusionThe study shows that P. chrysosporium and A. niger have the potential to be used as production platforms for value-added products from pyrolyzed lignocellulosic biomass. Selected P. chrysosporium is able to decrease the content of other compounds except levoglucosan and levoglucosan can be further converted into citric acid in the residual liquids by A. niger. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 3%
Unknown 29 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 20%
Student > Ph. D. Student 5 17%
Professor 3 10%
Other 3 10%
Student > Master 2 7%
Other 4 13%
Unknown 7 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 20%
Agricultural and Biological Sciences 5 17%
Environmental Science 4 13%
Chemical Engineering 4 13%
Chemistry 2 7%
Other 2 7%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 January 2015.
All research outputs
#15,315,142
of 22,778,347 outputs
Outputs from Microbial Cell Factories
#981
of 1,597 outputs
Outputs of similar age
#208,384
of 352,216 outputs
Outputs of similar age from Microbial Cell Factories
#29
of 39 outputs
Altmetric has tracked 22,778,347 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,597 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,216 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.