↓ Skip to main content

RETRACTED ARTICLE: Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in…

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

twitter
19 X users
googleplus
2 Google+ users

Citations

dimensions_citation
90 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RETRACTED ARTICLE: Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice
Published in
Journal of Experimental & Clinical Cancer Research, December 2017
DOI 10.1186/s13046-017-0661-7
Pubmed ID
Authors

Pan Zhang, Ze-Lin Lai, Hui-Fen Chen, Min Zhang, An Wang, Tao Jia, Wen-Qin Sun, Xi-Min Zhu, Xiao-Feng Chen, Zheng Zhao, Jun Zhang

Abstract

Chemoresistance is a major obstacle that limits the benefits of 5-Fluorouracil (5-Fu)-based chemotherapy for colon cancer patients. Autophagy is an important cellular mechanism underlying chemoresistance. Recent research advances have given new insights into the use of natural bioactive compounds to overcome chemoresistance in colon cancer chemotherapy. As one of the multitargeted and safer phytomedicines, curcumin has been reported to work as cancer-specific chemosensitizer, presumably via induction of autophagic signaling pathways. The precise therapeutic effect of curcumin on autophagy in determining tumorous cells' fate, however, remains unclear. This study was conducted to investigate the differential modulations of the treatments either with 5-Fu alone or 5-Fu combined with curcumin on cellular autophagic responses and viabilities in the human colon cancer cells HCT116 and HT29, and explore molecular signaling transductions underlying the curcumin-mediated autophagic changes and potentiation of 5-Fu's cytotoxicity in vitro and in vivo. Cell proliferation assay and morphology observation were used to identify the cytotoxicity of different combinations of curcumin and 5-Fu in HCT116 and HT29 cells. Cell immunofluorescence assay, Flow cytometry and Western blot were employed to detect changes of autophagy and the autophagy-related signaling pathways in the colon cancer cells and/or xenograft mice. Curcumin could significantly augment the cytotoxicity of 5-Fu to the tumorous cells, and the pre-treatment with curcumin followed by 5-Fu (pre-Cur) proved to be the most effective one compared to other two combinations. The chemosensitizing role of curcumin might attribute to the autophagy turnover from being activated in 5-Fu mono-treatment to being inhibited in the pre-Cur treatment as indicated by the changes in expression of beclin-1, p62 and LC3II/LC3I and the intensity of Cyto-ID Green staining. The autophagic alterations appeared to be contributed by down-regulation of not only the phospho-Akt and phospho-mTOR expressions but the phospho-AMPK and phospho-ULK1 levels as well. The cellular activation of AMPK by addition of A-769662 to the pre-Cur combination resulted in reversed changes in expressions of the autophagy protein markers and apoptotic status compared to those of the pre-Cur combination treatment. The findings were validated in the xenograft mice, in which the tumor growth was significantly suppressed in the mice with 25-day combination treatment, and meanwhile expressions of the autophagy markers, P-AMPK and P-ULK1 were all reversely altered in line with those observed in HCT116 cells. Pre-treatment with curcumin followed by 5-Fu may mediate autophagy turnover both in vitro and in vivo via AMPK/ULK1-dependent autophagy inhibition and AKT modulation, which may account for the increased susceptibility of the colon cancer cells/xenograft to the cytotoxicity of 5-Fu.

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 17%
Student > Master 6 11%
Researcher 5 9%
Student > Bachelor 4 7%
Student > Postgraduate 4 7%
Other 8 15%
Unknown 18 33%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 8 15%
Medicine and Dentistry 7 13%
Biochemistry, Genetics and Molecular Biology 7 13%
Chemistry 3 6%
Agricultural and Biological Sciences 2 4%
Other 8 15%
Unknown 19 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2018.
All research outputs
#2,694,239
of 25,382,440 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#116
of 2,380 outputs
Outputs of similar age
#58,114
of 447,848 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#3
of 41 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,380 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 447,848 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.