↓ Skip to main content

Estimating species pools for a single ecological assemblage

Overview of attention for article published in BMC Ecology and Evolution, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Estimating species pools for a single ecological assemblage
Published in
BMC Ecology and Evolution, December 2017
DOI 10.1186/s12898-017-0155-7
Pubmed ID
Authors

Tsung-Jen Shen, Youhua Chen, You-Fang Chen

Abstract

The species pool concept was formulated over the past several decades and has since played an important role in explaining multi-scale ecological patterns. Previous statistical methods were developed to identify species pools based on broad-scale species range maps or community similarity computed from data collected from many areas. No statistical method is available for estimating species pools for a single local community (sampling area size may be very small as ≤ 1 km2). In this study, based on limited local abundance information, we developed a simple method to estimate the area size and richness of a species pool for a local ecological community. The method involves two steps. In the first step, parameters from a truncated negative trinomial model characterizing the distributional aggregation of all species (i.e., non-random species distribution) in the local community were estimated. In the second step, we assume that the unseen species in the local community are most likely the rare species, only found in the remaining part of the species pool, and vice versa, if the remaining portion of the pool was surveyed and was contrasted with the sampled area. Therefore, we can estimate the area size of the pool, as long as an abundance threshold for defining rare species is given. Since the size of the pool is dependent on the rarity threshold, to unanimously determine the pool size, we developed an optimal method to delineate the rarity threshold based on the balance of the changing rates of species absence probabilities in the sampled and unsampled areas of the pool. For a 50 ha (0.5 km2) forest plot in the Barro Colorado Island of central Panama, our model predicted that the local, if not regional, species pool for the 0.5 km2 forest plot was nearly the entire island. Accordingly, tree species richness in this pool was estimated as around 360. When the sampling size was smaller, the upper bound of the 95% confidence interval could reach 418, which was very close to the flora record of tree richness for the island. A numerical test further demonstrated the power and reliability of the proposed method, as the true values of area size and species richness for the hypothetical species pool have been well covered by the 95% confidence intervals of the true values. Our method fills the knowledge gap on estimating species pools for a single local ecological assemblage with little information. The method is statistically robust and independent of sampling size, as proved by both empirical and numerical tests.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 23%
Student > Bachelor 3 12%
Professor > Associate Professor 3 12%
Student > Master 2 8%
Student > Ph. D. Student 2 8%
Other 3 12%
Unknown 7 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 46%
Environmental Science 5 19%
Earth and Planetary Sciences 1 4%
Medicine and Dentistry 1 4%
Engineering 1 4%
Other 0 0%
Unknown 6 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 March 2018.
All research outputs
#4,549,722
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#1,153
of 3,714 outputs
Outputs of similar age
#89,930
of 447,848 outputs
Outputs of similar age from BMC Ecology and Evolution
#33
of 75 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 447,848 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.