↓ Skip to main content

Involvements of p38 MAPK and oxidative stress in the ozone-induced enhancement of AHR and pulmonary inflammation in an allergic asthma model

Overview of attention for article published in Respiratory Research, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Involvements of p38 MAPK and oxidative stress in the ozone-induced enhancement of AHR and pulmonary inflammation in an allergic asthma model
Published in
Respiratory Research, December 2017
DOI 10.1186/s12931-017-0697-4
Pubmed ID
Authors

Aihua Bao, Hong Yang, Jie Ji, Yuqin Chen, Wuping Bao, Feng Li, Min Zhang, Xin Zhou, Qiang Li, Suqin Ben

Abstract

Exposure to ambient ozone (O3) increases the susceptivity to allergens and triggers exacerbations in patients with asthma. However, the detailed mechanisms of action for O3 to trigger asthma exacerbations are still unclear. An ovalbumin (OVA)-established asthmatic mouse model was selected to expose to filtered air (OVA-model) or 1.0 ppm O3 (OVA-O3 model) during the process of OVA challenge. Next, the possible involvements of p38 MAPK and oxidative stress in the ozone actions on the asthma exacerbations were investigated on the mice of OVA-O3 model by treating them with SB239063 (a p38 MAPK inhibitor), and/or the α-tocopherol (antioxidant). Biological measurements were conducted including airway hyperresponsiveness (AHR), airway resistance (Raw), lung compliance (CL), inflammation in the airway lumen and lung parenchyma, the phosphorylation of p38 MAPK and heat shock protein (HSP) 27 in the tracheal tissues, and the malondialdehyde (MDA) content and the glutathione peroxidase (GSH-Px) activity in lung tissues. In OVA-allergic mice, O3 exposure deteriorated airway hyperresponsiveness (AHR), airway resistance (Raw), lung compliance (CL) and pulmonary inflammation, accompanied by the increased oxidative stress in lung tissues and promoted p38 MAPK and HSP27 phosphorylation in tracheal tissues. Administration of SB239063 (a p38 MAPK inhibitor) on OVA-O3 model exclusively mitigated the Raw, the CL, and the BAL IL-13 content, while α-tocopherol (antioxidant) differentially reduced the BAL number of eosinophils and macrophages, the content of BAL hyaluronan, the peribronchial inflammation, as well as the mRNA expression of TNF-α and IL-5 in the lung tissues of OVA-O3 model. Administration of these two chemical inhibitors similarly inhibited the AHR, the BAL IFN-γ and IL-6 production, the perivascular lung inflammation and the lung IL-17 mRNA expression of OVA-O3 model. Interestingly, the combined treatment of both compounds together synergistically inhibited neutrophil counts in the BALF and CXCL-1 gene expression in the lung. O3 exposure during the OVA challenge process promoted exacerbation in asthma. Both p38 MAPK and oxidative stress were found to play a critical role in this process and simultaneous inhibition of these two pathways significantly reduced the O3-elicited detrimental effects on the asthma exacerbation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 21%
Researcher 5 15%
Student > Ph. D. Student 4 12%
Student > Bachelor 2 6%
Student > Doctoral Student 1 3%
Other 4 12%
Unknown 11 32%
Readers by discipline Count As %
Medicine and Dentistry 8 24%
Agricultural and Biological Sciences 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Biochemistry, Genetics and Molecular Biology 2 6%
Nursing and Health Professions 2 6%
Other 4 12%
Unknown 13 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2021.
All research outputs
#15,745,807
of 25,382,440 outputs
Outputs from Respiratory Research
#1,762
of 3,062 outputs
Outputs of similar age
#247,258
of 448,999 outputs
Outputs of similar age from Respiratory Research
#41
of 56 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,999 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.