↓ Skip to main content

Refine gene functional similarity network based on interaction networks

Overview of attention for article published in BMC Bioinformatics, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Refine gene functional similarity network based on interaction networks
Published in
BMC Bioinformatics, December 2017
DOI 10.1186/s12859-017-1969-1
Pubmed ID
Authors

Zhen Tian, Maozu Guo, Chunyu Wang, Xiaoyan Liu, Shiming Wang

Abstract

In recent years, biological interaction networks have become the basis of some essential study and achieved success in many applications. Some typical networks such as protein-protein interaction networks have already been investigated systematically. However, little work has been available for the construction of gene functional similarity networks so far. In this research, we will try to build a high reliable gene functional similarity network to promote its further application. Here, we propose a novel method to construct and refine the gene functional similarity network. It mainly contains three steps. First, we establish an integrated gene functional similarity networks based on different functional similarity calculation methods. Then, we construct a referenced gene-gene association network based on the protein-protein interaction networks. At last, we refine the spurious edges in the integrated gene functional similarity network with the help of the referenced gene-gene association network. Experiment results indicate that the refined gene functional similarity network (RGFSN) exhibits a scale-free, small world and modular architecture, with its degrees fit best to power law distribution. In addition, we conduct protein complex prediction experiment for human based on RGFSN and achieve an outstanding result, which implies it has high reliability and wide application significance. Our efforts are insightful for constructing and refining gene functional similarity networks, which can be applied to build other high quality biological networks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 38%
Student > Bachelor 3 23%
Student > Ph. D. Student 1 8%
Lecturer > Senior Lecturer 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 1 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 38%
Agricultural and Biological Sciences 3 23%
Computer Science 1 8%
Medicine and Dentistry 1 8%
Engineering 1 8%
Other 0 0%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 January 2018.
All research outputs
#15,487,739
of 23,015,156 outputs
Outputs from BMC Bioinformatics
#5,399
of 7,315 outputs
Outputs of similar age
#269,354
of 441,976 outputs
Outputs of similar age from BMC Bioinformatics
#89
of 143 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,315 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,976 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 143 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.