↓ Skip to main content

The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
20 X users

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis
Published in
Critical Reviews in Diagnostic Imaging, January 2018
DOI 10.1186/s12968-017-0419-6
Pubmed ID
Authors

Lu Lin, Xiao Li, Jun Feng, Kai-ni Shen, Zhuang Tian, Jian Sun, Yue-ying Mao, Jian Cao, Zheng-yu Jin, Jian Li, Joseph B. Selvanayagam, Yi-ning Wang

Abstract

Cardiac impairment is associated with high morbidity and mortality in immunoglobulin light chain (AL) type amyloidosis, for which early identification and risk stratification is vital. For myocardial tissue characterization, late gadolinium enhancement (LGE) is a classic and most commonly performed cardiovascular magnetic resonance (CMR) parameter. T1 mapping with native T1 and extracellular volume (ECV) are recently developed quantitative parameters. We aimed to investigate the prognostic value of native T1, ECV and LGE in patients with AL amyloidosis. Eighty-two patients (55.5 ± 8.5 years; 52 M) and 20 healthy subjects (53.2 ± 11.7 years; 10 M) were prospectively recruited. All subjects underwent CMR with LGE imaging and T1 mapping using a Modified Look-Locker Inversion-recovery (MOLLI) sequence on a 3 T scanner. Native T1 and ECV were measured semi-automatically using a dedicated CMR software. The left ventricular (LV) LGE pattern was classified as none, patchy, and global groups. Global LGE was considered when there was diffuse, transmural LGE in more than half of the short axis images. Follow-up was performed for all-cause mortality using Cox proportional hazards regression analysis and Kaplan-Meier survival curves. The patients demonstrated an increase in native T1 (1438 ± 120 ms vs. 1283 ± 46 ms, P = 0.001) and ECV (43.9 ± 10.9% vs. 27.0 ± 1.7%, P = 0.001) compared to healthy controls. Native T1, ECV and LGE showed significant correlation with Mayo Stage, and ECV and LGE showed significant correlation with echocardiographic E/E' and LV ejection fraction. During the follow-up for a median time of 8 months, 21 deaths occurred. ECV ≥ 44.0% (hazard ratio [HR] 7.249, 95% confidence interval (CI) 1.751-13.179, P = 0.002) and global LGE (HR 4.804, 95% CI 1.971-12.926, P = 0.001) were independently prognostic for mortality over other clinical and imaging parameters. In subgroups with the same LGE pattern, ECV ≥ 44.0% remained prognostic (log rank P = 0.029). Median native T1 (1456 ms) was not prognostic for mortality (Tarone-Ware, P = 0.069). During a short-term follow-up, both ECV and LGE are independently prognostic for mortality in AL amyloidosis. In patients with a similar LGE pattern, ECV remained prognostic. Native T1 was not found to be a prognostic factor.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 8 17%
Researcher 6 13%
Student > Bachelor 5 11%
Other 5 11%
Student > Ph. D. Student 4 9%
Other 7 15%
Unknown 12 26%
Readers by discipline Count As %
Medicine and Dentistry 27 57%
Social Sciences 1 2%
Biochemistry, Genetics and Molecular Biology 1 2%
Materials Science 1 2%
Engineering 1 2%
Other 0 0%
Unknown 16 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2018.
All research outputs
#3,120,148
of 25,806,080 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#166
of 1,388 outputs
Outputs of similar age
#65,864
of 453,099 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#8
of 30 outputs
Altmetric has tracked 25,806,080 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,388 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 453,099 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.