↓ Skip to main content

Motor modules during adaptation to walking in a powered ankle exoskeleton

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
154 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Motor modules during adaptation to walking in a powered ankle exoskeleton
Published in
Journal of NeuroEngineering and Rehabilitation, January 2018
DOI 10.1186/s12984-017-0343-x
Pubmed ID
Authors

Daniel A. Jacobs, Jeffrey R. Koller, Katherine M. Steele, Daniel P. Ferris

Abstract

Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 154 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 154 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 16%
Researcher 24 16%
Student > Master 14 9%
Student > Doctoral Student 10 6%
Student > Bachelor 9 6%
Other 25 16%
Unknown 47 31%
Readers by discipline Count As %
Engineering 51 33%
Medicine and Dentistry 10 6%
Neuroscience 9 6%
Sports and Recreations 7 5%
Nursing and Health Professions 6 4%
Other 9 6%
Unknown 62 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 January 2018.
All research outputs
#18,581,651
of 23,015,156 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#998
of 1,292 outputs
Outputs of similar age
#330,789
of 442,518 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#21
of 21 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,292 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,518 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.