↓ Skip to main content

α-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism

Overview of attention for article published in Molecular Neurodegeneration, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
86 Dimensions

Readers on

mendeley
112 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
α-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism
Published in
Molecular Neurodegeneration, January 2018
DOI 10.1186/s13024-017-0233-5
Pubmed ID
Authors

Seung Pil Yun, Donghoon Kim, Sangjune Kim, SangMin Kim, Senthilkumar S. Karuppagounder, Seung-Hwan Kwon, Saebom Lee, Tae-In Kam, Suhyun Lee, Sangwoo Ham, Jae Hong Park, Valina L. Dawson, Ted M. Dawson, Yunjong Lee, Han Seok Ko

Abstract

Mutations in glucocerebrosidase (GBA) cause Gaucher disease (GD) and increase the risk of developing Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB). Since both genetic and environmental factors contribute to the pathogenesis of sporadic PD, we investigated the susceptibility of nigrostriatal dopamine (DA) neurons in L444P GBA heterozygous knock-in (GBA +/L444P ) mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a selective dopaminergic mitochondrial neurotoxin. We used GBA +/L444P mice, α-synuclein knockout (SNCA -/- ) mice at 8 months of age, and adeno-associated virus (AAV)-human GBA overexpression to investigate the rescue effect of DA neuronal loss and susceptibility by MPTP. Mitochondrial morphology and functional assay were used to identify mitochondrial defects in GBA +/L444P mice. Motor behavioral test, immunohistochemistry, and HPLC were performed to measure dopaminergic degeneration by MPTP and investigate the relationship between GBA mutation and α-synuclein. Mitochondrial immunostaining, qPCR, and Western blot were also used to study the effects of α-synuclein knockout or GBA overexpression on MPTP-induced mitochondrial defects and susceptibility. L444P GBA heterozygous mutation reduced GBA protein levels, enzymatic activity and a concomitant accumulation of α-synuclein in the midbrain of GBA +/L444P mice. Furthermore, the deficiency resulted in defects in mitochondria of cortical neurons cultured from GBA +/L444P mice. Notably, treatment with MPTP resulted in a significant loss of dopaminergic neurons and striatal dopaminergic fibers in GBA +/L444P mice compared to wild type (WT) mice. Levels of striatal DA and its metabolites were more depleted in the striatum of GBA +/L444P mice. Behavioral deficits, neuroinflammation, and mitochondrial defects were more exacerbated in GBA +/L444P mice after MPTP treatment. Importantly, MPTP induced PD-like symptoms were significantly improved by knockout of α-synuclein or augmentation of GBA via AAV5-hGBA injection in both WT and GBA +/L444P mice. Intriguingly, the degree of reduction in MPTP induced PD-like symptoms in GBA +/L444P α-synuclein (SNCA) -/- mice was nearly equal to that in SNCA -/- mice after MPTP treatment. Our results suggest that GBA deficiency due to L444P GBA heterozygous mutation and the accompanying accumulation of α-synuclein render DA neurons more susceptible to MPTP intoxication. Thus, GBA and α-synuclein play dual physiological roles in the survival of DA neurons in response to the mitochondrial dopaminergic neurotoxin, MPTP.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 112 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 112 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 21%
Researcher 20 18%
Student > Doctoral Student 10 9%
Student > Bachelor 10 9%
Student > Master 7 6%
Other 11 10%
Unknown 30 27%
Readers by discipline Count As %
Neuroscience 24 21%
Biochemistry, Genetics and Molecular Biology 16 14%
Agricultural and Biological Sciences 12 11%
Medicine and Dentistry 8 7%
Chemistry 4 4%
Other 12 11%
Unknown 36 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 January 2018.
All research outputs
#13,341,934
of 23,015,156 outputs
Outputs from Molecular Neurodegeneration
#658
of 854 outputs
Outputs of similar age
#214,314
of 442,237 outputs
Outputs of similar age from Molecular Neurodegeneration
#7
of 12 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 854 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,237 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.