↓ Skip to main content

Ecological distribution and population dynamics of Rift Valley fever virus mosquito vectors (Diptera, Culicidae) in Senegal

Overview of attention for article published in Parasites & Vectors, January 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ecological distribution and population dynamics of Rift Valley fever virus mosquito vectors (Diptera, Culicidae) in Senegal
Published in
Parasites & Vectors, January 2018
DOI 10.1186/s13071-017-2591-9
Pubmed ID
Authors

Biram Biteye, Assane G. Fall, Mamadou Ciss, Momar T. Seck, Andrea Apolloni, Moussa Fall, Annelise Tran, Geoffrey Gimonneau

Abstract

Many zoonotic infectious diseases have emerged and re-emerged over the last two decades. There has been a significant increase in vector-borne diseases due to climate variations that lead to environmental changes favoring the development and adaptation of vectors. This study was carried out to improve knowledge of the ecology of mosquito vectors involved in the transmission of Rift Valley fever virus (RVFV) in Senegal. An entomological survey was conducted in three Senegalese agro-systems, Senegal River Delta (SRD), Senegal River Valley (SRV) and Ferlo, during the rainy season (July to November) of 2014 and 2015. Mosquitoes were trapped using CDC light traps set at ten sites for two consecutive nights during each month of the rainy season, for a total of 200 night-traps. Ecological indices were calculated to characterize the different populations of RVFV mosquito vectors. Generalized linear models with mixed effects were used to assess the influence of climatic conditions on the abundance of RVFV mosquito vectors. A total of 355,408 mosquitoes belonging to 7 genera and 35 species were captured in 200 night-traps. RVFV vectors represented 89.02% of the total, broken down as follows: Ae. vexans arabiensis (31.29%), Cx. poicilipes (0.6%), Cx. tritaeniorhynchus (33.09%) and Ma. uniformis (24.04%). Comparison of meteorological indices (rainfall, temperature, relative humidity), abundances and species diversity indicated that there were no significant differences between SRD and SRV (P = 0.36) while Ferlo showed significant differences with both (P < 0.001). Mosquito collection increased significantly with temperature for Ae. vexans arabiensis (P < 0.001), Cx. tritaeniorhynchus (P = 0.04) and Ma. uniformis (P = 0.01), while Cx. poicilipes decreased (P = 0.003). Relative humidity was positively and significantly associated with the abundances of Ae. vexans arabiensis (P < 0.001), Cx. poicilipes (P = 0.01) and Cx. tritaeniorhynchus (P = 0.007). Rainfall had a positive and significant effect on the abundances of Ae. vexans arabiensis (P = 0.005). The type of biotope (temporary ponds, river or lake) around the trap points had a significant effect on the mosquito abundances (P < 0.001). In terms of species diversity, the SRD and SRV ecosystems are similar to each other and different from that of Ferlo. Meteorological indices and the type of biotope (river, lake or temporary pond) have significant effects on the abundance of RVFV mosquito vectors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 17%
Student > Ph. D. Student 6 8%
Unspecified 5 7%
Student > Bachelor 5 7%
Researcher 4 6%
Other 12 17%
Unknown 28 39%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 17%
Unspecified 5 7%
Environmental Science 5 7%
Immunology and Microbiology 4 6%
Social Sciences 4 6%
Other 13 18%
Unknown 29 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2018.
All research outputs
#7,032,173
of 23,016,919 outputs
Outputs from Parasites & Vectors
#1,637
of 5,505 outputs
Outputs of similar age
#143,133
of 443,116 outputs
Outputs of similar age from Parasites & Vectors
#50
of 138 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 5,505 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,116 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 138 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.