↓ Skip to main content

Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease

Overview of attention for article published in Human Genomics, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
11 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease
Published in
Human Genomics, January 2018
DOI 10.1186/s40246-018-0132-z
Pubmed ID
Authors

Jarrett D. Morrow, Michael H. Cho, John Platig, Xiaobo Zhou, Dawn L. DeMeo, Weiliang Qiu, Bartholome Celli, Nathaniel Marchetti, Gerard J. Criner, Raphael Bueno, George R. Washko, Kimberly Glass, John Quackenbush, Edwin K. Silverman, Craig P. Hersh

Abstract

Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) significantly associated with chronic obstructive pulmonary disease (COPD). However, many genetic variants show suggestive evidence for association but do not meet the strict threshold for genome-wide significance. Integrative analysis of multiple omics datasets has the potential to identify novel genes involved in disease pathogenesis by leveraging these variants in a functional, regulatory context. We performed expression quantitative trait locus (eQTL) analysis using genome-wide SNP genotyping and gene expression profiling of lung tissue samples from 86 COPD cases and 31 controls, testing for SNPs associated with gene expression levels. These results were integrated with a prior COPD GWAS using an ensemble statistical and network methods approach to identify relevant genes and observe them in the context of overall genetic control of gene expression to highlight co-regulated genes and disease pathways. We identified 250,312 unique SNPs and 4997 genes in the cis(local)-eQTL analysis (5% false discovery rate). The top gene from the integrative analysis was MAPT, a gene recently identified in an independent GWAS of lung function. The genes HNRNPAB and PCBP2 with RNA binding activity and the gene ACVR1B were identified in network communities with validated disease relevance. The integration of lung tissue gene expression with genome-wide SNP genotyping and subsequent intersection with prior GWAS and omics studies highlighted candidate genes within COPD loci and in communities harboring known COPD genes. This integration also identified novel disease genes in sub-threshold regions that would otherwise have been missed through GWAS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 22%
Student > Ph. D. Student 6 17%
Student > Doctoral Student 2 6%
Lecturer > Senior Lecturer 1 3%
Student > Bachelor 1 3%
Other 6 17%
Unknown 12 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 25%
Medicine and Dentistry 8 22%
Agricultural and Biological Sciences 2 6%
Philosophy 1 3%
Business, Management and Accounting 1 3%
Other 3 8%
Unknown 12 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 February 2019.
All research outputs
#5,407,105
of 25,382,440 outputs
Outputs from Human Genomics
#135
of 564 outputs
Outputs of similar age
#114,445
of 469,130 outputs
Outputs of similar age from Human Genomics
#6
of 13 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 564 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 469,130 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.